
NAME
readpassphrase - get a passphrase from the user

SYNOPSIS
#include <readpassphrase.h>

char *

readpassphrase(const char *prompt, char *buf, size_t bufsiz, int flags);

DESCRIPTION
The readpassphrase() function displays a prompt to, and reads in a passphrase from, /dev/tty. If this file

is inaccessible and the RPP_REQUIRE_TTY flag is not set, readpassphrase() displays the prompt on the

standard error output and reads from the standard input. In this case it is generally not possible to turn

off echo.

Up to bufsiz - 1 characters (one is for the NUL) are read into the provided buffer buf. Any additional

characters and the terminating newline (or return) character are discarded.

The readpassphrase() function takes the following optional flags:

RPP_ECHO_OFF turn off echo (default behavior)

RPP_ECHO_ON leave echo on

RPP_REQUIRE_TTY fail if there is no tty

RPP_FORCELOWER

force input to lower case

RPP_FORCEUPPER force input to upper case

RPP_SEVENBIT strip the high bit from input

RPP_STDIN force read of passphrase from stdin

The calling process should zero the passphrase as soon as possible to avoid leaving the cleartext

passphrase visible in the process’s address space.

RETURN VALUES
Upon successful completion, readpassphrase() returns a pointer to the NUL-terminated passphrase. If an

error is encountered, the terminal state is restored and a NULL pointer is returned.

FILES
/dev/tty

EXAMPLES

READPASSPHRASE(3) FreeBSD Library Functions Manual READPASSPHRASE(3)

FreeBSD 14.0-RELEASE-p11 May 31, 2007 FreeBSD 14.0-RELEASE-p11



The following code fragment will read a passphrase from /dev/tty into the buffer passbuf.

char passbuf[1024];

...

if (readpassphrase("Response: ", passbuf, sizeof(passbuf),

RPP_REQUIRE_TTY) == NULL)

errx(1, "unable to read passphrase");

if (compare(transform(passbuf), epass) != 0)

errx(1, "bad passphrase");

...

memset(passbuf, 0, sizeof(passbuf));

ERRORS
[EINTR] The readpassphrase() function was interrupted by a signal.

[EINVAL] The bufsiz argument was zero.

[EIO] The process is a member of a background process attempting to read from its

controlling terminal, the process is ignoring or blocking the SIGTTIN signal, or

the process group is orphaned.

[EMFILE] The process has already reached its limit for open file descriptors.

[ENFILE] The system file table is full.

[ENOTTY] There is no controlling terminal and the RPP_REQUIRE_TTY flag was specified.

SIGNALS
The readpassphrase() function will catch the following signals:

SIGALRM SIGHUP SIGINT

SIGPIPE SIGQUIT SIGTERM

SIGTSTP SIGTTIN SIGTTOU

When one of the above signals is intercepted, terminal echo will be restored if it had previously been

READPASSPHRASE(3) FreeBSD Library Functions Manual READPASSPHRASE(3)

FreeBSD 14.0-RELEASE-p11 May 31, 2007 FreeBSD 14.0-RELEASE-p11



turned off. If a signal handler was installed for the signal when readpassphrase() was called, that handler

is then executed. If no handler was previously installed for the signal then the default action is taken as

per sigaction(2).

The SIGTSTP, SIGTTIN and SIGTTOU signals (stop signals generated from keyboard or due to

terminal I/O from a background process) are treated specially. When the process is resumed after it has

been stopped, readpassphrase() will reprint the prompt and the user may then enter a passphrase.

SEE ALSO
sigaction(2), getpass(3)

STANDARDS
The readpassphrase() function is an extension and should not be used if portability is desired.

HISTORY
The readpassphrase() function first appeared in FreeBSD 4.6 and OpenBSD 2.9.

READPASSPHRASE(3) FreeBSD Library Functions Manual READPASSPHRASE(3)

FreeBSD 14.0-RELEASE-p11 May 31, 2007 FreeBSD 14.0-RELEASE-p11


