
NAME
recv, recvfrom, recvmsg, recvmmsg - receive message(s) from a socket

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

ssize_t

recv(int s, void *buf, size_t len, int flags);

ssize_t

recvfrom(int s, void *buf, size_t len, int flags, struct sockaddr * restrict from,

socklen_t * restrict fromlen);

ssize_t

recvmsg(int s, struct msghdr *msg, int flags);

ssize_t

recvmmsg(int s, struct mmsghdr * restrict msgvec, size_t vlen, int flags,

const struct timespec * restrict timeout);

DESCRIPTION
The recvfrom(), recvmsg(), and recvmmsg() system calls are used to receive messages from a socket,

and may be used to receive data on a socket whether or not it is connection-oriented.

If from is not a null pointer and the socket is not connection-oriented, the source address of the message

is filled in. The fromlen argument is a value-result argument, initialized to the size of the buffer

associated with from, and modified on return to indicate the actual size of the address stored there.

The recv() function is normally used only on a connected socket (see connect(2)) and is identical to

recvfrom() with a null pointer passed as its from argument.

The recvmmsg() function is used to receive multiple messages at a call. Their number is supplied by

vlen. The messages are placed in the buffers described by msgvec vector, after reception. The size of

each received message is placed in the msg_len field of each element of the vector. If timeout is NULL

the call blocks until the data is available for each supplied message buffer. Otherwise it waits for data

for the specified amount of time. If the timeout expired and there is no data received, a value 0 is

returned. The ppoll(2) system call is used to implement the timeout mechanism, before first receive is

RECV(2) FreeBSD System Calls Manual RECV(2)

FreeBSD 14.0-RELEASE-p6 July 30, 2022 FreeBSD 14.0-RELEASE-p6



performed.

The recv(), recvfrom() and recvmsg() return the length of the message on successful completion,

whereas recvmmsg() returns the number of received messages. If a message is too long to fit in the

supplied buffer, excess bytes may be discarded depending on the type of socket the message is received

from (see socket(2)).

If no messages are available at the socket, the receive call waits for a message to arrive, unless the

socket is non-blocking (see fcntl(2)) in which case the value -1 is returned and the global variable errno

is set to EAGAIN. The receive calls except recvmmsg() normally return any data available, up to the

requested amount, rather than waiting for receipt of the full amount requested; this behavior is affected

by the socket-level options SO_RCVLOWAT and SO_RCVTIMEO described in getsockopt(2). The

recvmmsg() function implements this behaviour for each message in the vector.

The select(2) system call may be used to determine when more data arrives.

The flags argument to a recv() function is formed by or’ing one or more of the values:

MSG_OOB process out-of-band data

MSG_PEEK peek at incoming message

MSG_TRUNC return real packet or datagram length

MSG_WAITALL wait for full request or error

MSG_DONTWAIT do not block

MSG_CMSG_CLOEXEC set received fds close-on-exec

MSG_WAITFORONE do not block after receiving the first message (only for

recvmmsg() )

The MSG_OOB flag requests receipt of out-of-band data that would not be received in the normal data

stream. Some protocols place expedited data at the head of the normal data queue, and thus this flag

cannot be used with such protocols. The MSG_PEEK flag causes the receive operation to return data

from the beginning of the receive queue without removing that data from the queue. Thus, a subsequent

receive call will return the same data. The MSG_TRUNC flag causes the receive operation to return the

full length of the packet or datagram even if larger than provided buffer. The flag is supported on

SOCK_DGRAM sockets for AF_INET , AF_INET6 and AF_UNIX families. The MSG_WAITALL

flag requests that the operation block until the full request is satisfied. However, the call may still return

less data than requested if a signal is caught, an error or disconnect occurs, or the next data to be

received is of a different type than that returned. The MSG_DONTWAIT flag requests the call to return

when it would block otherwise. If no data is available, errno is set to EAGAIN. This flag is not

available in ANSI X3.159-1989 ("ANSI C89") or ISO/IEC 9899:1999 ("ISO C99") compilation mode.

The MSG_WAITFORONE flag sets MSG_DONTWAIT after the first message has been received. This

RECV(2) FreeBSD System Calls Manual RECV(2)

FreeBSD 14.0-RELEASE-p6 July 30, 2022 FreeBSD 14.0-RELEASE-p6



flag is only relevant for recvmmsg().

The recvmsg() system call uses a msghdr structure to minimize the number of directly supplied

arguments. This structure has the following form, as defined in <sys/socket.h>:

struct msghdr {

void *msg_name; /* optional address */

socklen_t msg_namelen; /* size of address */

struct iovec *msg_iov; /* scatter/gather array */

int msg_iovlen; /* # elements in msg_iov */

void *msg_control; /* ancillary data, see below */

socklen_t msg_controllen;/* ancillary data buffer len */

int msg_flags; /* flags on received message */

};

Here msg_name and msg_namelen specify the source address if the socket is unconnected; msg_name

may be given as a null pointer if no names are desired or required. The msg_iov and msg_iovlen

arguments describe scatter gather locations, as discussed in read(2). The msg_control argument, which

has length msg_controllen, points to a buffer for other protocol control related messages or other

miscellaneous ancillary data. The messages are of the form:

struct cmsghdr {

socklen_t cmsg_len; /* data byte count, including hdr */

int cmsg_level; /* originating protocol */

int cmsg_type; /* protocol-specific type */

/* followed by

u_char cmsg_data[]; */

};

As an example, the SO_TIMESTAMP socket option returns a reception timestamp for UDP packets.

With AF_UNIX domain sockets, ancillary data can be used to pass file descriptors and process

credentials. See unix(4) for details.

The msg_flags field is set on return according to the message received. MSG_EOR indicates end-of-

record; the data returned completed a record (generally used with sockets of type

SOCK_SEQPACKET). MSG_TRUNC indicates that the trailing portion of a datagram was discarded

because the datagram was larger than the buffer supplied. MSG_CTRUNC indicates that some control

data were discarded due to lack of space in the buffer for ancillary data. MSG_OOB is returned to

indicate that expedited or out-of-band data were received.

RECV(2) FreeBSD System Calls Manual RECV(2)

FreeBSD 14.0-RELEASE-p6 July 30, 2022 FreeBSD 14.0-RELEASE-p6



The recvmmsg() system call uses the mmsghdr structure, defined as follows in the <sys/socket.h>

header:

struct mmsghdr {

struct msghdr msg_hdr; /* message header */

ssize_t msg_len;/* message length */

};

On data reception the msg_len field is updated to the length of the received message.

RETURN VALUES
These calls except recvmmsg() return the number of bytes received. recvmmsg() returns the number of

messages received. A value of -1 is returned if an error occurred.

ERRORS
The calls fail if:

[EBADF] The argument s is an invalid descriptor.

[ECONNRESET] The remote socket end is forcibly closed.

[ENOTCONN] The socket is associated with a connection-oriented protocol and has not been

connected (see connect(2) and accept(2)).

[ENOTSOCK] The argument s does not refer to a socket.

[EMFILE] The recvmsg() system call was used to receive rights (file descriptors) that were in

flight on the connection. However, the receiving program did not have enough

free file descriptor slots to accept them. In this case the descriptors are closed,

with pending data either discarded in the case of the unreliable datagram protocol

or preserved in the case of a reliable protocol. The pending data can be retrieved

with another call to recvmsg().

[EMSGSIZE] The msg_iovlen member of the msghdr structure pointed to by msg is less than or

equal to 0, or is greater than IOV_MAX.

[EAGAIN] The socket is marked non-blocking and the receive operation would block, or a

receive timeout had been set and the timeout expired before data were received.

[EINTR] The receive was interrupted by delivery of a signal before any data were

RECV(2) FreeBSD System Calls Manual RECV(2)

FreeBSD 14.0-RELEASE-p6 July 30, 2022 FreeBSD 14.0-RELEASE-p6



available.

[EFAULT] The receive buffer pointer(s) point outside the process’s address space.

SEE ALSO
fcntl(2), getsockopt(2), read(2), select(2), socket(2), CMSG_DATA(3), unix(4)

HISTORY
The recv() function appeared in 4.2BSD. The recvmmsg() function appeared in FreeBSD 11.0.

RECV(2) FreeBSD System Calls Manual RECV(2)

FreeBSD 14.0-RELEASE-p6 July 30, 2022 FreeBSD 14.0-RELEASE-p6


