
NAME
refcount, refcount_init, refcount_acquire, refcount_release - manage a simple reference counter

SYNOPSIS
#include <sys/param.h>
#include <sys/refcount.h>

void

refcount_init(volatile u_int *count, u_int value);

u_int

refcount_load(volatile u_int *count);

u_int

refcount_acquire(volatile u_int *count);

bool

refcount_acquire_checked(volatile u_int *count);

bool

refcount_acquire_if_not_zero(volatile u_int *count);

bool

refcount_release(volatile u_int *count);

bool

refcount_release_if_last(volatile u_int *count);

bool

refcount_release_if_not_last(volatile u_int *count);

DESCRIPTION
The refcount functions provide an API to manage a simple reference counter. The caller provides the

storage for the counter in an unsigned integer. A pointer to this integer is passed via count. Usually the

counter is used to manage the lifetime of an object and is stored as a member of the object.

Currently all functions are implemented as static inline.

The refcount_init() function is used to set the initial value of the counter to value. It is normally used

when creating a reference-counted object.

REFCOUNT(9) FreeBSD Kernel Developer’s Manual REFCOUNT(9)

FreeBSD 14.0-RELEASE-p11 October 12, 2022 FreeBSD 14.0-RELEASE-p11



The refcount_load() function returns a snapshot of the counter value. This value may immediately

become out-of-date in the absence of external synchronization. refcount_load() should be used instead

of relying on the properties of the volatile qualifier.

The refcount_acquire() function is used to acquire a new reference. It returns the counter value before

the new reference was acquired. The caller is responsible for ensuring that it holds a valid reference

while obtaining a new reference. For example, if an object is stored on a list and the list holds a

reference on the object, then holding a lock that protects the list provides sufficient protection for

acquiring a new reference.

The refcount_acquire_checked() variant performs the same operation as refcount_acquire(), but

additionally checks that the count value does not overflow as result of the operation. It returns true if the

reference was sucessfully obtained, and false if it was not, due to the overflow.

The refcount_acquire_if_not_zero() function is yet another variant of refcount_acquire(), which only

obtains the reference when some reference already exists. In other words, *count must be already

greater than zero for the function to succeed, in which case the return value is true, otherwise false is

returned.

The refcount_release() function is used to release an existing reference. The function returns true if the

reference being released was the last reference; otherwise, it returns false.

The refcount_release_if_last() and refcount_release_if_not_last() functions are variants of

refcount_release() which only drop the reference when it is or is not the last reference, respectively. In

other words, refcount_release_if_last() returns true when *count is equal to one, in which case it is

decremented to zero. Otherwise, *count is not modified and the function returns false. Similarly,

refcount_release_if_not_last() returns true when *count is greater than one, in which case *count is

decremented. Otherwise, if *count is equal to one, the reference is not released and the function returns

false.

Note that these routines do not provide any inter-CPU synchronization or data protection for managing

the counter. The caller is responsible for any additional synchronization needed by consumers of any

containing objects. In addition, the caller is also responsible for managing the life cycle of any

containing objects including explicitly releasing any resources when the last reference is released.

The refcount_release() unconditionally executes a release fence (see atomic(9)) before releasing the

reference, which synchronizes with an acquire fence executed right before returning the true value. This

ensures that the destructor, supposedly executed by the caller after the last reference was dropped, sees

all updates done during the lifetime of the object.

REFCOUNT(9) FreeBSD Kernel Developer’s Manual REFCOUNT(9)

FreeBSD 14.0-RELEASE-p11 October 12, 2022 FreeBSD 14.0-RELEASE-p11



RETURN VALUES
The refcount_release function returns true when releasing the last reference and false when releasing any

other reference.

HISTORY
These functions were introduced in FreeBSD 6.0.

REFCOUNT(9) FreeBSD Kernel Developer’s Manual REFCOUNT(9)

FreeBSD 14.0-RELEASE-p11 October 12, 2022 FreeBSD 14.0-RELEASE-p11


