
NAME
regcomp, regexec, regerror, regfree - regular-expression library

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <regex.h>

int

regcomp(regex_t * restrict preg, const char * restrict pattern, int cflags);

int

regexec(const regex_t * restrict preg, const char * restrict string, size_t nmatch,

regmatch_t pmatch[restrict], int eflags);

size_t

regerror(int errcode, const regex_t * restrict preg, char * restrict errbuf, size_t errbuf_size);

void

regfree(regex_t *preg);

DESCRIPTION
These routines implement IEEE Std 1003.2 ("POSIX.2") regular expressions ("RE"s); see re_format(7).

The regcomp() function compiles an RE written as a string into an internal form, regexec() matches that

internal form against a string and reports results, regerror() transforms error codes from either into

human-readable messages, and regfree() frees any dynamically-allocated storage used by the internal

form of an RE.

The header <regex.h> declares two structure types, regex_t and regmatch_t, the former for compiled

internal forms and the latter for match reporting. It also declares the four functions, a type regoff_t, and

a number of constants with names starting with "REG_".

The regcomp() function compiles the regular expression contained in the pattern string, subject to the

flags in cflags, and places the results in the regex_t structure pointed to by preg. The cflags argument is

the bitwise OR of zero or more of the following flags:

REG_EXTENDED Compile modern ("extended") REs, rather than the obsolete ("basic") REs that are

the default.

REGEX(3) FreeBSD Library Functions Manual REGEX(3)

FreeBSD 14.0-RELEASE-p11 April 15, 2017 FreeBSD 14.0-RELEASE-p11

REG_BASIC This is a synonym for 0, provided as a counterpart to REG_EXTENDED to

improve readability.

REG_NOSPEC Compile with recognition of all special characters turned off. All characters are

thus considered ordinary, so the "RE" is a literal string. This is an extension,

compatible with but not specified by IEEE Std 1003.2 ("POSIX.2"), and should be

used with caution in software intended to be portable to other systems.

REG_EXTENDED and REG_NOSPEC may not be used in the same call to

regcomp().

REG_ICASE Compile for matching that ignores upper/lower case distinctions. See re_format(7).

REG_NOSUB Compile for matching that need only report success or failure, not what was

matched.

REG_NEWLINE Compile for newline-sensitive matching. By default, newline is a completely

ordinary character with no special meaning in either REs or strings. With this flag,

‘[^’ bracket expressions and ‘.’ never match newline, a ‘^’ anchor matches the null

string after any newline in the string in addition to its normal function, and the ‘$’

anchor matches the null string before any newline in the string in addition to its

normal function.

REG_PEND The regular expression ends, not at the first NUL, but just before the character

pointed to by the re_endp member of the structure pointed to by preg. The re_endp

member is of type const char *. This flag permits inclusion of NULs in the RE;

they are considered ordinary characters. This is an extension, compatible with but

not specified by IEEE Std 1003.2 ("POSIX.2"), and should be used with caution in

software intended to be portable to other systems.

REG_POSIX Compile only IEEE Std 1003.2 ("POSIX.2") compliant expressions. This flag has

no effect unless linking against libregex. This is an extension, compatible with but

not specified by IEEE Std 1003.2 ("POSIX.2"), and should be used with caution in

software intended to be portable to other systems.

When successful, regcomp() returns 0 and fills in the structure pointed to by preg. One member of that

structure (other than re_endp) is publicized: re_nsub, of type size_t, contains the number of

parenthesized subexpressions within the RE (except that the value of this member is undefined if the

REG_NOSUB flag was used). If regcomp() fails, it returns a non-zero error code; see DIAGNOSTICS.

The regexec() function matches the compiled RE pointed to by preg against the string, subject to the

REGEX(3) FreeBSD Library Functions Manual REGEX(3)

FreeBSD 14.0-RELEASE-p11 April 15, 2017 FreeBSD 14.0-RELEASE-p11

flags in eflags, and reports results using nmatch, pmatch, and the returned value. The RE must have

been compiled by a previous invocation of regcomp(). The compiled form is not altered during

execution of regexec(), so a single compiled RE can be used simultaneously by multiple threads.

By default, the NUL-terminated string pointed to by string is considered to be the text of an entire line,

minus any terminating newline. The eflags argument is the bitwise OR of zero or more of the following

flags:

REG_NOTBOL The first character of the string is treated as the continuation of a line. This means

that the anchors ‘^’, ‘[[:<:]]’, and ‘\<’ do not match before it; but see

REG_STARTEND below. This does not affect the behavior of newlines under

REG_NEWLINE.

REG_NOTEOL The NUL terminating the string does not end a line, so the ‘$’ anchor does not

match before it. This does not affect the behavior of newlines under

REG_NEWLINE.

REG_STARTEND The string is considered to start at string + pmatch[0].rm_so and to end before the

byte located at string + pmatch[0].rm_eo, regardless of the value of nmatch. See

below for the definition of pmatch and nmatch. This is an extension, compatible

with but not specified by IEEE Std 1003.2 ("POSIX.2"), and should be used with

caution in software intended to be portable to other systems.

Without REG_NOTBOL, the position rm_so is considered the beginning of a line,

such that ‘^’ matches before it, and the beginning of a word if there is a word

character at this position, such that ‘[[:<:]]’ and ‘\<’ match before it.

With REG_NOTBOL, the character at position rm_so is treated as the continuation

of a line, and if rm_so is greater than 0, the preceding character is taken into

consideration. If the preceding character is a newline and the regular expression

was compiled with REG_NEWLINE, ‘^’ matches before the string; if the preceding

character is not a word character but the string starts with a word character, ‘[[:<:]]’

and ‘\<’ match before the string.

See re_format(7) for a discussion of what is matched in situations where an RE or a portion thereof

could match any of several substrings of string.

Normally, regexec() returns 0 for success and the non-zero code REG_NOMATCH for failure. Other

non-zero error codes may be returned in exceptional situations; see DIAGNOSTICS.

REGEX(3) FreeBSD Library Functions Manual REGEX(3)

FreeBSD 14.0-RELEASE-p11 April 15, 2017 FreeBSD 14.0-RELEASE-p11

If REG_NOSUB was specified in the compilation of the RE, or if nmatch is 0, regexec() ignores the

pmatch argument (but see below for the case where REG_STARTEND is specified). Otherwise, pmatch

points to an array of nmatch structures of type regmatch_t. Such a structure has at least the members

rm_so and rm_eo, both of type regoff_t (a signed arithmetic type at least as large as an off_t and a

ssize_t), containing respectively the offset of the first character of a substring and the offset of the first

character after the end of the substring. Offsets are measured from the beginning of the string argument

given to regexec(). An empty substring is denoted by equal offsets, both indicating the character

following the empty substring.

The 0th member of the pmatch array is filled in to indicate what substring of string was matched by the

entire RE. Remaining members report what substring was matched by parenthesized subexpressions

within the RE; member i reports subexpression i, with subexpressions counted (starting at 1) by the

order of their opening parentheses in the RE, left to right. Unused entries in the array (corresponding

either to subexpressions that did not participate in the match at all, or to subexpressions that do not exist

in the RE (that is, i > preg->re_nsub)) have both rm_so and rm_eo set to -1. If a subexpression

participated in the match several times, the reported substring is the last one it matched. (Note, as an

example in particular, that when the RE ‘(b*)+’ matches ‘bbb’, the parenthesized subexpression matches

each of the three ‘b’s and then an infinite number of empty strings following the last ‘b’, so the reported

substring is one of the empties.)

If REG_STARTEND is specified, pmatch must point to at least one regmatch_t (even if nmatch is 0 or

REG_NOSUB was specified), to hold the input offsets for REG_STARTEND. Use for output is still

entirely controlled by nmatch; if nmatch is 0 or REG_NOSUB was specified, the value of pmatch[0]

will not be changed by a successful regexec().

The regerror() function maps a non-zero errcode from either regcomp() or regexec() to a human-

readable, printable message. If preg is non-NULL, the error code should have arisen from use of the

regex_t pointed to by preg, and if the error code came from regcomp(), it should have been the result

from the most recent regcomp() using that regex_t. The (regerror() may be able to supply a more

detailed message using information from the regex_t.) The regerror() function places the NUL-

terminated message into the buffer pointed to by errbuf, limiting the length (including the NUL) to at

most errbuf_size bytes. If the whole message will not fit, as much of it as will fit before the terminating

NUL is supplied. In any case, the returned value is the size of buffer needed to hold the whole message

(including terminating NUL). If errbuf_size is 0, errbuf is ignored but the return value is still correct.

If the errcode given to regerror() is first ORed with REG_ITOA, the "message" that results is the

printable name of the error code, e.g. "REG_NOMATCH", rather than an explanation thereof. If

errcode is REG_ATOI, then preg shall be non-NULL and the re_endp member of the structure it points

to must point to the printable name of an error code; in this case, the result in errbuf is the decimal digits

of the numeric value of the error code (0 if the name is not recognized). REG_ITOA and REG_ATOI

REGEX(3) FreeBSD Library Functions Manual REGEX(3)

FreeBSD 14.0-RELEASE-p11 April 15, 2017 FreeBSD 14.0-RELEASE-p11

are intended primarily as debugging facilities; they are extensions, compatible with but not specified by

IEEE Std 1003.2 ("POSIX.2"), and should be used with caution in software intended to be portable to

other systems. Be warned also that they are considered experimental and changes are possible.

The regfree() function frees any dynamically-allocated storage associated with the compiled RE pointed

to by preg. The remaining regex_t is no longer a valid compiled RE and the effect of supplying it to

regexec() or regerror() is undefined.

None of these functions references global variables except for tables of constants; all are safe for use

from multiple threads if the arguments are safe.

IMPLEMENTATION CHOICES
There are a number of decisions that IEEE Std 1003.2 ("POSIX.2") leaves up to the implementor, either

by explicitly saying "undefined" or by virtue of them being forbidden by the RE grammar. This

implementation treats them as follows.

See re_format(7) for a discussion of the definition of case-independent matching.

There is no particular limit on the length of REs, except insofar as memory is limited. Memory usage is

approximately linear in RE size, and largely insensitive to RE complexity, except for bounded

repetitions. See BUGS for one short RE using them that will run almost any system out of memory.

A backslashed character other than one specifically given a magic meaning by IEEE Std 1003.2

("POSIX.2") (such magic meanings occur only in obsolete ["basic"] REs) is taken as an ordinary

character.

Any unmatched ‘[’ is a REG_EBRACK error.

Equivalence classes cannot begin or end bracket-expression ranges. The endpoint of one range cannot

begin another.

RE_DUP_MAX, the limit on repetition counts in bounded repetitions, is 255.

A repetition operator (‘?’, ‘*’, ‘+’, or bounds) cannot follow another repetition operator. A repetition

operator cannot begin an expression or subexpression or follow ‘^’ or ‘|’.

‘|’ cannot appear first or last in a (sub)expression or after another ‘|’, i.e., an operand of ‘|’ cannot be an

empty subexpression. An empty parenthesized subexpression, ‘()’, is legal and matches an empty

(sub)string. An empty string is not a legal RE.

REGEX(3) FreeBSD Library Functions Manual REGEX(3)

FreeBSD 14.0-RELEASE-p11 April 15, 2017 FreeBSD 14.0-RELEASE-p11

A ‘{’ followed by a digit is considered the beginning of bounds for a bounded repetition, which must

then follow the syntax for bounds. A ‘{’ not followed by a digit is considered an ordinary character.

‘^’ and ‘$’ beginning and ending subexpressions in obsolete ("basic") REs are anchors, not ordinary

characters.

DIAGNOSTICS
Non-zero error codes from regcomp() and regexec() include the following:

REG_NOMATCH The regexec() function failed to match

REG_BADPAT invalid regular expression

REG_ECOLLATE invalid collating element

REG_ECTYPE invalid character class

REG_EESCAPE ‘\’ applied to unescapable character

REG_ESUBREG invalid backreference number

REG_EBRACK brackets ‘[]’ not balanced

REG_EPAREN parentheses ‘()’ not balanced

REG_EBRACE braces ‘{ }’ not balanced

REG_BADBR invalid repetition count(s) in ‘{ }’

REG_ERANGE invalid character range in ‘[]’

REG_ESPACE ran out of memory

REG_BADRPT ‘?’, ‘*’, or ‘+’ operand invalid

REG_EMPTY empty (sub)expression

REG_ASSERT cannot happen - you found a bug

REG_INVARG invalid argument, e.g. negative-length string

REG_ILLSEQ illegal byte sequence (bad multibyte character)

SEE ALSO
grep(1), re_format(7)

IEEE Std 1003.2 ("POSIX.2"), sections 2.8 (Regular Expression Notation) and B.5 (C Binding for

Regular Expression Matching).

HISTORY
Originally written by Henry Spencer. Altered for inclusion in the 4.4BSD distribution.

BUGS
This is an alpha release with known defects. Please report problems.

The back-reference code is subtle and doubts linger about its correctness in complex cases.

REGEX(3) FreeBSD Library Functions Manual REGEX(3)

FreeBSD 14.0-RELEASE-p11 April 15, 2017 FreeBSD 14.0-RELEASE-p11

The regexec() function performance is poor. This will improve with later releases. The nmatch

argument exceeding 0 is expensive; nmatch exceeding 1 is worse. The regexec() function is largely

insensitive to RE complexity except that back references are massively expensive. RE length does

matter; in particular, there is a strong speed bonus for keeping RE length under about 30 characters, with

most special characters counting roughly double.

The regcomp() function implements bounded repetitions by macro expansion, which is costly in time

and space if counts are large or bounded repetitions are nested. An RE like, say,

‘((((a{1,100}){1,100}){1,100}){1,100}){1,100}’ will (eventually) run almost any existing machine out

of swap space.

There are suspected problems with response to obscure error conditions. Notably, certain kinds of

internal overflow, produced only by truly enormous REs or by multiply nested bounded repetitions, are

probably not handled well.

Due to a mistake in IEEE Std 1003.2 ("POSIX.2"), things like ‘a)b’ are legal REs because ‘)’ is a special

character only in the presence of a previous unmatched ‘(’. This cannot be fixed until the spec is fixed.

The standard’s definition of back references is vague. For example, does ‘a\(\(b\)*\2\)*d’ match

‘abbbd’? Until the standard is clarified, behavior in such cases should not be relied on.

The implementation of word-boundary matching is a bit of a kludge, and bugs may lurk in combinations

of word-boundary matching and anchoring.

Word-boundary matching does not work properly in multibyte locales.

REGEX(3) FreeBSD Library Functions Manual REGEX(3)

FreeBSD 14.0-RELEASE-p11 April 15, 2017 FreeBSD 14.0-RELEASE-p11

