
NAME
tset, reset - initialize or reset terminal state

SYNOPSIS
tset [-IQVcqrsw] [-] [-e ch] [-i ch] [-k ch] [-m mapping] [terminal-type]

reset [-IQVcqrsw] [-] [-e ch] [-i ch] [-k ch] [-m mapping] [terminal-type]

DESCRIPTION
tset -- initialization

This program initializes terminals.

First, tset retrieves the current terminal mode settings for your terminal. It does this by successively

testing

+o the standard error,

+o standard output,

+o standard input and

+o ultimately "/dev/tty"

to obtain terminal settings. Having retrieved these settings, tset remembers which file descriptor to use

when updating settings.

Next, tset determines the type of terminal that you are using. This determination is done as follows,

using the first terminal type found.

1. The terminal argument specified on the command line.

2. The value of the TERM environment variable.

3. (BSD systems only.) The terminal type associated with the standard error output device in the

/etc/ttys file. (On System V hosts and systems using that convention, getty(8) does this job by setting

TERM according to the type passed to it by /etc/inittab.)

4. The default terminal type, "unknown", is not suitable for curses applications.

If the terminal type was not specified on the command-line, the -m option mappings are then applied;

see subsection "Terminal Type Mapping". Then, if the terminal type begins with a question mark ("?"),

tset(1) User commands tset(1)

ncurses 6.5 2024-04-27 tset(1)



the user is prompted for confirmation of the terminal type. An empty response confirms the type, or,

another type can be entered to specify a new type. Once the terminal type has been determined, the

terminal description for the terminal is retrieved. If no terminal description is found for the type, the

user is prompted for another terminal type.

Once the terminal description is retrieved,

+o if the "-w" option is enabled, tset may update the terminal’s window size.

If the window size cannot be obtained from the operating system, but the terminal description (or

environment, e.g., LINES and COLUMNS variables specify this), use this to set the operating

system’s notion of the window size.

+o if the "-c" option is enabled, the backspace, interrupt and line kill characters (among many other

things) are set

+o unless the "-I" option is enabled, the terminal and tab initialization strings are sent to the standard

error output, and tset waits one second (in case a hardware reset was issued).

+o Finally, if the erase, interrupt and line kill characters have changed, or are not set to their default

values, their values are displayed to the standard error output.

reset -- reinitialization
When invoked as reset, tset sets the terminal modes to "sane" values:

+o sets cooked and echo modes,

+o turns off cbreak and raw modes,

+o turns on newline translation and

+o resets any unset special characters to their default values

before doing the terminal initialization described above. Also, rather than using the terminal

initialization strings, it uses the terminal reset strings.

The reset command is useful after a program dies leaving a terminal in an abnormal state:

+o you may have to type

tset(1) User commands tset(1)

ncurses 6.5 2024-04-27 tset(1)



<LF>reset<LF>

(the line-feed character is normally control-J) to get the terminal to work, as carriage-return may

no longer work in the abnormal state.

+o Also, the terminal will often not echo the command.

Setting the Environment
It is often desirable to enter the terminal type and information about the terminal’s capabilities into the

shell’s environment. This is done using the -s option.

When the -s option is specified, the commands to enter the information into the shell’s environment are

written to the standard output. If the SHELL environment variable ends in "csh", the commands are for

csh(1), otherwise, they are for sh(1). The csh commands set and unset the shell variable noglob,

leaving it unset. The following line in the .login or .profile files will initialize the environment

correctly:

eval ‘tset -s options ... ‘

Terminal Type Mapping
When the terminal is not hardwired into the system (or the current system information is incorrect) the

terminal type derived from the /etc/ttys file or the TERM environment variable is often something

generic like network, dialup, or unknown. When tset is used in a startup script it is often desirable to

provide information about the type of terminal used on such ports.

The -m options maps from some set of conditions to a terminal type, that is, to tell tset "If I’m on this

port at a particular speed, guess that I’m on that kind of terminal".

The argument to the -m option consists of an optional port type, an optional operator, an optional baud

rate specification, an optional colon (":") character and a terminal type. The port type is a string

(delimited by either the operator or the colon character). The operator may be any combination of ">",

"<", "@", and "!"; ">" means greater than, "<" means less than, "@" means equal to and "!" inverts the

sense of the test. The baud rate is specified as a number and is compared with the speed of the standard

error output (which should be the control terminal). The terminal type is a string.

If the terminal type is not specified on the command line, the -m mappings are applied to the terminal

type. If the port type and baud rate match the mapping, the terminal type specified in the mapping

replaces the current type. If more than one mapping is specified, the first applicable mapping is used.

For example, consider the following mapping: dialup>9600:vt100. The port type is dialup , the

tset(1) User commands tset(1)

ncurses 6.5 2024-04-27 tset(1)



operator is >, the baud rate specification is 9600, and the terminal type is vt100. The result of this

mapping is to specify that if the terminal type is dialup, and the baud rate is greater than 9600 baud, a

terminal type of vt100 will be used.

If no baud rate is specified, the terminal type will match any baud rate. If no port type is specified, the

terminal type will match any port type. For example, -m dialup:vt100 -m :?xterm will cause any dialup

port, regardless of baud rate, to match the terminal type vt100, and any non-dialup port type to match

the terminal type ?xterm. Note, because of the leading question mark, the user will be queried on a

default port as to whether they are actually using an xterm terminal.

No whitespace characters are permitted in the -m option argument. Also, to avoid problems with meta-

characters, it is suggested that the entire -m option argument be placed within single quote characters,

and that csh users insert a backslash character ("\") before any exclamation marks ("!").

OPTIONS
The options are as follows:

-c Set control characters and modes.

-e ch Set the erase character to ch.

-I Do not send the terminal or tab initialization strings to the terminal.

-i ch Set the interrupt character to ch.

-k ch Set the line kill character to ch.

-m mapping

Specify a mapping from a port type to a terminal; see subsection "Terminal Type Mapping".

-Q Do not display any values for the erase, interrupt and line kill characters. Normally tset displays

the values for control characters which differ from the system’s default values.

-q The terminal type is displayed to the standard output, and the terminal is not initialized in any

way. The option "-" by itself is equivalent but archaic.

-r Print the terminal type to the standard error output.

-s Print the sequence of shell commands to initialize the environment variable TERM to the

standard output; see subsection "Setting the Environment".

tset(1) User commands tset(1)

ncurses 6.5 2024-04-27 tset(1)



-V reports the version of ncurses which was used in this program, and exits.

-w Resize the window to match the size deduced via setupterm(3X). Normally this has no effect,

unless setupterm is not able to detect the window size.

The arguments for the -e, -i, and -k options may either be entered as actual characters or by using the

"hat" notation, i.e., control-h may be specified as "^H" or "^h".

If neither -c or -w is given, both options are assumed.

ENVIRONMENT
The tset command uses these environment variables:

SHELL

tells tset whether to initialize TERM using sh(1) or csh(1) syntax.

TERM

Denotes your terminal type. Each terminal type is distinct, though many are similar.

TERMCAP

may denote the location of a termcap database. If it is not an absolute pathname, e.g., begins

with a "/", tset removes the variable from the environment before looking for the terminal

description.

FILES
/etc/ttys

system port name to terminal type mapping database (BSD versions only).

/usr/share/misc/terminfo

compiled terminal description database directory

PORTABILITY
Neither IEEE Std 1003.1/The Open Group Base Specifications Issue 7 (POSIX.1-2008) nor X/Open

Curses Issue 7 documents tset or reset.

The AT&T tput utility (AIX, HP-UX, Solaris) incorporated the terminal-mode manipulation as well as

termcap-based features such as resetting tabstops from tset in BSD (4.1c), presumably with the

intention of making tset obsolete. However, each of those systems still provides tset. In fact, the

commonly-used reset utility is always an alias for tset.

tset(1) User commands tset(1)

ncurses 6.5 2024-04-27 tset(1)



The tset utility provides backward compatibility with BSD environments; under most modern Unices,

/etc/inittab and getty(8) can set TERM appropriately for each dial-up line, obviating what was tset’s
most important use. This implementation behaves like 4.4BSD tset, with a few exceptions we shall

consider now.

A few options are different because the TERMCAP variable is no longer supported under terminfo-

based ncurses:

+o The -S option of BSD tset no longer works; it prints an error message to the standard error and

dies.

+o The -s option only sets TERM, not TERMCAP.

There was an undocumented 4.4BSD feature that invoking tset via a link named "TSET" (or via any

other name beginning with an upper-case letter) set the terminal to use upper-case only. This feature

has been omitted.

The -A, -E, -h, -u and -v options were deleted from the tset utility in 4.4BSD. None of them were

documented in 4.3BSD and all are of limited utility at best. The -a, -d, and -p options are similarly not

documented or useful, but were retained as they appear to be in widespread use. It is strongly

recommended that any usage of these three options be changed to use the -m option instead. The -a, -d,

and -p options are therefore omitted from the usage summary above.

Very old systems, e.g., 3BSD, used a different terminal driver which was replaced in 4BSD in the early

1980s. To accommodate these older systems, the 4BSD tset provided a -n option to specify that the

new terminal driver should be used. This implementation does not provide that choice.

It is still permissible to specify the -e, -i, and -k options without arguments, although it is strongly

recommended that such usage be fixed to explicitly specify the character.

As of 4.4BSD, executing tset as reset no longer implies the -Q option. Also, the interaction between

the - option and the terminal argument in some historic implementations of tset has been removed.

The -c and -w options are not found in earlier implementations. However, a different window size-

change feature was provided in 4.4BSD.

+o In 4.4BSD, tset uses the window size from the termcap description to set the window size if tset is

not able to obtain the window size from the operating system.

+o In ncurses, tset obtains the window size using setupterm(3X), which may be from the operating

tset(1) User commands tset(1)

ncurses 6.5 2024-04-27 tset(1)



system, the LINES and COLUMNS environment variables or the terminal description.

Obtaining the window size from a terminal’s type description is common to both implementations, but

considered obsolescent. Its only practical use is for hardware terminals. Generally, the window size

will remain uninitialized only if there were a problem obtaining the value from the operating system

(and setupterm would still fail). The LINES and COLUMNS environment variables may thus be

useful for working around window-size problems, but have the drawback that if the window is resized,

their values must be recomputed and reassigned. The resize(1) program distributed with xterm(1)

assists this activity.

HISTORY
A reset command written by Kurt Shoens appeared in 1BSD (March 1978). It set the erase and kill

characters to ^H (backspace) and @ respectively. Mark Horton improved this reset in 3BSD (October

1979), adding intr, quit, start/stop, and eof characters as well as changing the program to avoid

modifying any user settings. That version of reset did not use termcap.

Eric Allman wrote a distinct tset command for 1BSD, using a forerunner of termcap called ttycap.

Allman’s comments in the source code indicate that he began work in October 1977, continuing

development over the next few years. By late 1979, it had migrated to termcap and handled the

TERMCAP variable. Later comments indicate that tset was modified in September 1980 to use logic

copied from the 3BSD "reset" program when it was invoked as reset. This version appeared in

4.1cBSD, late in 1982. Other developers such as Keith Bostic and Jim Bloom continued to modify tset
until 4.4BSD was released in 1993.

The ncurses implementation was lightly adapted from the 4.4BSD sources to use the terminfo API by

Eric S. Raymond <esr@snark.thyrsus.com>.

SEE ALSO
csh(1), sh(1), stty(1), curs_terminfo(3X), tty(4), terminfo(5), ttys(5), environ(7)

tset(1) User commands tset(1)

ncurses 6.5 2024-04-27 tset(1)


