
NAME
res_query, res_search, res_mkquery, res_send, res_init, dn_comp, dn_expand, dn_skipname, ns_get16,

ns_get32, ns_put16, ns_put32 - resolver routines

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int

res_query(const char *dname, int class, int type, u_char *answer, int anslen);

int

res_search(const char *dname, int class, int type, u_char *answer, int anslen);

int

res_mkquery(int op, const char *dname, int class, int type, const u_char *data, int datalen,

const u_char *newrr_in, u_char *buf, int buflen);

int

res_send(const u_char *msg, int msglen, u_char *answer, int anslen);

int

res_init(void);

int

dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char **dnptrs, u_char **lastdnptr);

int

dn_expand(const u_char *msg, const u_char *eomorig, const u_char *comp_dn, char *exp_dn,

int length);

int

dn_skipname(const u_char *comp_dn, const u_char *eom);

u_int

RESOLVER(3) FreeBSD Library Functions Manual RESOLVER(3)

FreeBSD 14.0-RELEASE-p6 September 15, 2022 FreeBSD 14.0-RELEASE-p6

ns_get16(const u_char *src);

u_long

ns_get32(const u_char *src);

void

ns_put16(u_int src, u_char *dst);

void

ns_put32(u_long src, u_char *dst);

DESCRIPTION
These routines are used for making, sending and interpreting query and reply messages with Internet

domain name servers.

Global configuration and state information that is used by the resolver routines is kept in the structure

_res. Most of the values have reasonable defaults and can be ignored. Options stored in _res.options are

defined in <resolv.h> and are as follows. Options are stored as a simple bit mask containing the bitwise

‘‘or’’ of the options enabled.

RES_INIT True if the initial name server address and default domain name are initialized (i.e.,

res_init() has been called).

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option, res_send() should continue

until it finds an authoritative answer or finds an error. Currently this is not

implemented.

RES_USEVC Use TCP connections for queries instead of UDP datagrams.

RES_STAYOPEN

Used with RES_USEVC to keep the TCP connection open between queries. This is

useful only in programs that regularly do many queries. UDP should be the normal

mode used.

RES_IGNTC Unused currently (ignore truncation errors, i.e., do not retry with TCP).

RES_RECURSE Set the recursion-desired bit in queries. This is the default. (res_send() does not do

iterative queries and expects the name server to handle recursion.)

RESOLVER(3) FreeBSD Library Functions Manual RESOLVER(3)

FreeBSD 14.0-RELEASE-p6 September 15, 2022 FreeBSD 14.0-RELEASE-p6

RES_DEFNAMES

If set, res_search() will append the default domain name to single-component names

(those that do not contain a dot). This option is enabled by default.

RES_DNSRCH If this option is set, res_search() will search for host names in the current domain

and in parent domains; see hostname(7). This is used by the standard host lookup

routine gethostbyname(3). This option is enabled by default.

RES_NOALIASES

This option turns off the user level aliasing feature controlled by the

"HOSTALIASES" environment variable. Network daemons should set this option.

RES_USE_INET6 Enables support for IPv6-only applications. This causes IPv4 addresses to be

returned as an IPv4 mapped address. For example, 10.1.1.1 will be returned as

::ffff:10.1.1.1. The option is meaningful with certain kernel configuration only.

RES_USE_EDNS0

Enables support for OPT pseudo-RR for EDNS0 extension. With the option,

resolver code will attach OPT pseudo-RR into DNS queries, to inform of our receive

buffer size. The option will allow DNS servers to take advantage of non-default

receive buffer size, and to send larger replies. DNS query packets with EDNS0

extension is not compatible with non-EDNS0 DNS servers.

The res_init() routine reads the configuration file (if any; see resolver(5)) to get the default domain

name, search list and the Internet address of the local name server(s). If no server is configured, the host

running the resolver is tried. The current domain name is defined by the hostname if not specified in the

configuration file; it can be overridden by the environment variable LOCALDOMAIN. This

environment variable may contain several blank-separated tokens if you wish to override the search list

on a per-process basis. This is similar to the search command in the configuration file. Another

environment variable "RES_OPTIONS" can be set to override certain internal resolver options which

are otherwise set by changing fields in the _res structure or are inherited from the configuration file’s

options command. The syntax of the "RES_OPTIONS" environment variable is explained in

resolver(5). Initialization normally occurs on the first call to one of the following routines.

The res_query() function provides an interface to the server query mechanism. It constructs a query,

sends it to the local server, awaits a response, and makes preliminary checks on the reply. The query

requests information of the specified type and class for the specified fully-qualified domain name

dname. The reply message is left in the answer buffer with length anslen supplied by the caller.

The res_search() routine makes a query and awaits a response like res_query(), but in addition, it

RESOLVER(3) FreeBSD Library Functions Manual RESOLVER(3)

FreeBSD 14.0-RELEASE-p6 September 15, 2022 FreeBSD 14.0-RELEASE-p6

implements the default and search rules controlled by the RES_DEFNAMES and RES_DNSRCH

options. It returns the first successful reply.

The remaining routines are lower-level routines used by res_query(). The res_mkquery() function

constructs a standard query message and places it in buf. It returns the size of the query, or -1 if the

query is larger than buflen. The query type op is usually QUERY, but can be any of the query types

defined in <arpa/nameser.h>. The domain name for the query is given by dname. The newrr_in

argument is currently unused but is intended for making update messages.

The res_send() routine sends a pre-formatted query and returns an answer. It will call res_init() if

RES_INIT is not set, send the query to the local name server, and handle timeouts and retries. The

length of the reply message is returned, or -1 if there were errors.

The dn_comp() function compresses the domain name exp_dn and stores it in comp_dn. The size of the

compressed name is returned or -1 if there were errors. The size of the array pointed to by comp_dn is

given by length. The compression uses an array of pointers dnptrs to previously-compressed names in

the current message. The first pointer points to the beginning of the message and the list ends with

NULL. The limit to the array is specified by lastdnptr. A side effect of dn_comp() is to update the list

of pointers for labels inserted into the message as the name is compressed. If dnptr is NULL, names are

not compressed. If lastdnptr is NULL, the list of labels is not updated.

The dn_expand() entry expands the compressed domain name comp_dn to a full domain name The

compressed name is contained in a query or reply message; msg is a pointer to the beginning of the

message. The uncompressed name is placed in the buffer indicated by exp_dn which is of size length.

The size of compressed name is returned or -1 if there was an error.

The dn_skipname() function skips over a compressed domain name, which starts at a location pointed to

by comp_dn. The compressed name is contained in a query or reply message; eom is a pointer to the

end of the message. The size of compressed name is returned or -1 if there was an error.

The ns_get16() function gets a 16-bit quantity from a buffer pointed to by src.

The ns_get32() function gets a 32-bit quantity from a buffer pointed to by src.

The ns_put16() function puts a 16-bit quantity src to a buffer pointed to by dst.

The ns_put32() function puts a 32-bit quantity src to a buffer pointed to by dst.

IMPLEMENTATION NOTES
This implementation of the resolver is thread-safe, but it will not function properly if the programmer

RESOLVER(3) FreeBSD Library Functions Manual RESOLVER(3)

FreeBSD 14.0-RELEASE-p6 September 15, 2022 FreeBSD 14.0-RELEASE-p6

attempts to declare his or her own _res structure in an attempt to replace the per-thread version referred

to by that macro.

The following compile-time option can be specified to change the default behavior of resolver routines

when necessary.

RES_ENFORCE_RFC1034 If this symbol is defined during compile-time, res_search() will enforce

RFC 1034 check, namely, disallow using of underscore character within

host names. This is used by the standard host lookup routines like

gethostbyname(3). For compatibility reasons this option is not enabled by

default.

RETURN VALUES
The res_init() function will return 0 on success, or -1 in a threaded program if per-thread storage could

not be allocated.

The res_mkquery(), res_search(), and res_query() functions return the size of the response on success, or

-1 if an error occurs. The integer h_errno may be checked to determine the reason for error. See

gethostbyname(3) for more information.

FILES
/etc/resolv.conf The configuration file, see resolver(5).

SEE ALSO
gethostbyname(3), resolver(5), hostname(7)

RFC1032, RFC1033, RFC1034, RFC1035, RFC974

HISTORY
The res_query function appeared in 4.3BSD.

RESOLVER(3) FreeBSD Library Functions Manual RESOLVER(3)

FreeBSD 14.0-RELEASE-p6 September 15, 2022 FreeBSD 14.0-RELEASE-p6

