
NAME
rfork - manipulate process resources

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t

rfork(int flags);

DESCRIPTION
Forking, vforking or rforking are the only ways new processes are created. The flags argument to

rfork() selects which resources of the invoking process (parent) are shared by the new process (child) or

initialized to their default values. The resources include the open file descriptor table (which, when

shared, permits processes to open and close files for other processes), and open files. The flags

argument is either RFSPAWN or the logical OR of some subset of:

RFPROC If set a new process is created; otherwise changes affect the current process.

RFNOWAIT If set, the child process will be dissociated from the parent. Upon exit the child will

not leave a status for the parent to collect. See wait(2).

RFFDG If set, the invoker’s file descriptor table (see intro(2)) is copied; otherwise the two

processes share a single table.

RFCFDG If set, the new process starts with a clean file descriptor table. Is mutually exclusive

with RFFDG.

RFTHREAD If set, the new process shares file descriptor to process leaders table with its parent.

Only applies when neither RFFDG nor RFCFDG are set.

RFMEM If set, the kernel will force sharing of the entire address space, typically by sharing the

hardware page table directly. The child will thus inherit and share all the segments

the parent process owns, whether they are normally shareable or not. The stack

segment is not split (both the parent and child return on the same stack) and thus

rfork() with the RFMEM flag may not generally be called directly from high level

languages including C. May be set only with RFPROC. A helper function is

provided to assist with this problem and will cause the new process to run on the

RFORK(2) FreeBSD System Calls Manual RFORK(2)

FreeBSD 14.0-RELEASE-p11 September 25, 2019 FreeBSD 14.0-RELEASE-p11



provided stack. See rfork_thread(3) for information. Note that a lot of code will not

run correctly in such an environment.

RFSIGSHARE If set, the kernel will force sharing the sigacts structure between the child and the

parent.

RFTSIGZMB If set, the kernel will deliver a specified signal to the parent upon the child exit,

instead of default SIGCHLD. The signal number signum is specified by oring the

RFTSIGFLAGS(signum) expression into flags. Specifying signal number 0 disables

signal delivery upon the child exit.

RFLINUXTHPN If set, the kernel will deliver SIGUSR1 instead of SIGCHLD upon thread exit for the

child. This is intended to mimic certain Linux clone behaviour.

File descriptors in a shared file descriptor table are kept open until either they are explicitly closed or all

processes sharing the table exit.

If RFSPAWN is passed, rfork will use vfork(2) semantics but reset all signal actions in the child to

default. This flag is used by the posix_spawn(3) implementation in libc.

If RFPROC is set, the value returned in the parent process is the process id of the child process; the

value returned in the child is zero. Without RFPROC, the return value is zero. Process id’s range from

1 to the maximum integer (int) value. The rfork() system call will sleep, if necessary, until required

process resources are available.

The fork() system call can be implemented as a call to rfork(RFFDG | RFPROC) but is not for

backwards compatibility.

RETURN VALUES
Upon successful completion, rfork() returns a value of 0 to the child process and returns the process ID

of the child process to the parent process. Otherwise, a value of -1 is returned to the parent process, no

child process is created, and the global variable errno is set to indicate the error.

ERRORS
The rfork() system call will fail and no child process will be created if:

[EAGAIN] The system-imposed limit on the total number of processes under execution

would be exceeded. The limit is given by the sysctl(3) MIB variable

KERN_MAXPROC. (The limit is actually ten less than this except for the super

user).

RFORK(2) FreeBSD System Calls Manual RFORK(2)

FreeBSD 14.0-RELEASE-p11 September 25, 2019 FreeBSD 14.0-RELEASE-p11



[EAGAIN] The user is not the super user, and the system-imposed limit on the total number

of processes under execution by a single user would be exceeded. The limit is

given by the sysctl(3) MIB variable KERN_MAXPROCPERUID.

[EAGAIN] The user is not the super user, and the soft resource limit corresponding to the

resource argument RLIMIT_NOFILE would be exceeded (see getrlimit(2)).

[EINVAL] Both the RFFDG and the RFCFDG flags were specified.

[EINVAL] Any flags not listed above were specified.

[EINVAL] An invalid signal number was specified.

[ENOMEM] There is insufficient swap space for the new process.

SEE ALSO
fork(2), intro(2), minherit(2), vfork(2), pthread_create(3), rfork_thread(3)

HISTORY
The rfork() function first appeared in Plan9.

RFORK(2) FreeBSD System Calls Manual RFORK(2)

FreeBSD 14.0-RELEASE-p11 September 25, 2019 FreeBSD 14.0-RELEASE-p11


