
NAME
rmlock, rm_init, rm_init_flags, rm_destroy, rm_rlock, rm_try_rlock, rm_wlock, rm_runlock,

rm_wunlock, rm_wowned, rm_sleep, rm_assert, RM_SYSINIT, RM_SYSINIT_FLAGS, rms_init,
rms_destroy, rms_rlock, rms_wlock, rms_runlock, rms_wunlock - kernel reader/writer lock optimized

for read-mostly access patterns

SYNOPSIS
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/rmlock.h>

void

rm_init(struct rmlock *rm, const char *name);

void

rm_init_flags(struct rmlock *rm, const char *name, int opts);

void

rm_destroy(struct rmlock *rm);

void

rm_rlock(struct rmlock *rm, struct rm_priotracker* tracker);

int

rm_try_rlock(struct rmlock *rm, struct rm_priotracker* tracker);

void

rm_wlock(struct rmlock *rm);

void

rm_runlock(struct rmlock *rm, struct rm_priotracker* tracker);

void

rm_wunlock(struct rmlock *rm);

int

rm_wowned(const struct rmlock *rm);

int

rm_sleep(void *wchan, struct rmlock *rm, int priority, const char *wmesg, int timo);

RMLOCK(9) FreeBSD Kernel Developer’s Manual RMLOCK(9)

FreeBSD 14.0-RELEASE-p11 April 12, 2021 FreeBSD 14.0-RELEASE-p11



options INVARIANTS
options INVARIANT_SUPPORT
void

rm_assert(struct rmlock *rm, int what);

#include <sys/kernel.h>

RM_SYSINIT(name, struct rmlock *rm, const char *desc);

RM_SYSINIT_FLAGS(name, struct rmlock *rm, const char *desc, int flags);

void

rms_init(struct rmslock *rms, const char *name);

void

rms_destroy(struct rmslock *rms);

void

rms_rlock(struct rmslock *rms);

void

rms_wlock(struct rmslock *rms);

void

rms_runlock(struct rmslock *rms);

void

rms_wunlock(struct rmslock *rms);

DESCRIPTION
Read-mostly locks allow shared access to protected data by multiple threads, or exclusive access by a

single thread. The threads with shared access are known as readers since they only read the protected

data. A thread with exclusive access is known as a writer since it can modify protected data.

Read-mostly locks are designed to be efficient for locks almost exclusively used as reader locks and as

such should be used for protecting data that rarely changes. Acquiring an exclusive lock after the lock

has been locked for shared access is an expensive operation.

Normal read-mostly locks are similar to rwlock(9) locks and follow the same lock ordering rules as

rwlock(9) locks. Read-mostly locks have full priority propagation like mutexes. Unlike rwlock(9),

RMLOCK(9) FreeBSD Kernel Developer’s Manual RMLOCK(9)

FreeBSD 14.0-RELEASE-p11 April 12, 2021 FreeBSD 14.0-RELEASE-p11



read-mostly locks propagate priority to both readers and writers. This is implemented via the

rm_priotracker structure argument supplied to rm_rlock() and rm_runlock(). Readers can recurse if the

lock is initialized with the RM_RECURSE option; however, writers are never allowed to recurse.

Sleeping for writers can be allowed by passing RM_SLEEPABLE to rm_init_flags(). It changes lock

ordering rules to the same as for sx(9) locks. They do not propagate priority to writers, but they do

propagate priority to readers. Note that readers are not permitted to sleep regardless of the flag.

Sleepable read-mostly locks (created with rms_init()) allow sleeping for both readers and writers, but

don’t do priority propagation for either. They follow sx(9) lock ordering.

Macros and Functions
rm_init(struct rmlock *rm, const char *name)

Initialize the read-mostly lock rm. The name description is used solely for debugging purposes.

This function must be called before any other operations on the lock.

rm_init_flags(struct rmlock *rm, const char *name, int opts)

Similar to rm_init(), initialize the read-mostly lock rm with a set of optional flags. The opts

arguments contains one or more of the following flags:

RM_NOWITNESS Instruct witness(4) to ignore this lock.

RM_RECURSE Allow threads to recursively acquire shared locks for rm.

RM_SLEEPABLE Create a sleepable read-mostly lock.

RM_NEW If the kernel has been compiled with option INVARIANTS, rm_init_flags()

will assert that the rm has not been initialized multiple times without

intervening calls to rm_destroy() unless this option is specified.

RM_DUPOK witness(4) should not log messages about duplicate locks being acquired.

rm_rlock(struct rmlock *rm, struct rm_priotracker* tracker)

Lock rm as a reader using tracker to track read owners of a lock for priority propagation. This

data structure is only used internally by rmlock and must persist until rm_runlock() has been

called. This data structure can be allocated on the stack since readers cannot sleep. If any thread

holds this lock exclusively, the current thread blocks, and its priority is propagated to the

exclusive holder. If the lock was initialized with the RM_RECURSE option the rm_rlock()

function can be called when the current thread has already acquired reader access on rm.

RMLOCK(9) FreeBSD Kernel Developer’s Manual RMLOCK(9)

FreeBSD 14.0-RELEASE-p11 April 12, 2021 FreeBSD 14.0-RELEASE-p11



rm_try_rlock(struct rmlock *rm, struct rm_priotracker* tracker)

Try to lock rm as a reader. rm_try_rlock() will return 0 if the lock cannot be acquired

immediately; otherwise, the lock will be acquired and a non-zero value will be returned. Note

that rm_try_rlock() may fail even while the lock is not currently held by a writer. If the lock was

initialized with the RM_RECURSE option, rm_try_rlock() will succeed if the current thread has

already acquired reader access.

rm_wlock(struct rmlock *rm)

Lock rm as a writer. If there are any shared owners of the lock, the current thread blocks. The

rm_wlock() function cannot be called recursively.

rm_runlock(struct rmlock *rm, struct rm_priotracker* tracker)

This function releases a shared lock previously acquired by rm_rlock(). The tracker argument

must match the tracker argument used for acquiring the shared lock

rm_wunlock(struct rmlock *rm)

This function releases an exclusive lock previously acquired by rm_wlock().

rm_destroy(struct rmlock *rm)

This functions destroys a lock previously initialized with rm_init(). The rm lock must be

unlocked.

rm_wowned(const struct rmlock *rm)

This function returns a non-zero value if the current thread owns an exclusive lock on rm.

rm_sleep(void *wchan, struct rmlock *rm, int priority, const char *wmesg, int timo)

This function atomically releases rm while waiting for an event. The rm lock must be

exclusively locked. For more details on the parameters to this function, see sleep(9).

rm_assert(struct rmlock *rm, int what)

This function asserts that the rm lock is in the state specified by what. If the assertions are not

true and the kernel is compiled with options INVARIANTS and options
INVARIANT_SUPPORT, the kernel will panic. Currently the following base assertions are

supported:

RA_LOCKED Assert that current thread holds either a shared or exclusive lock of rm.

RA_RLOCKED Assert that current thread holds a shared lock of rm.

RA_WLOCKED Assert that current thread holds an exclusive lock of rm.

RMLOCK(9) FreeBSD Kernel Developer’s Manual RMLOCK(9)

FreeBSD 14.0-RELEASE-p11 April 12, 2021 FreeBSD 14.0-RELEASE-p11



RA_UNLOCKED Assert that current thread holds neither a shared nor exclusive lock of rm.

In addition, one of the following optional flags may be specified with RA_LOCKED,

RA_RLOCKED, or RA_WLOCKED:

RA_RECURSED Assert that the current thread holds a recursive lock of rm.

RA_NOTRECURSED Assert that the current thread does not hold a recursive lock of rm.

rms_init(struct rmslock *rms, const char *name)

Initialize the sleepable read-mostly lock rms. The name description is used as wmesg parameter

to the msleep(9) routine. This function must be called before any other operations on the lock.

rms_rlock(struct rmlock *rm)

Lock rms as a reader. If any thread holds this lock exclusively, the current thread blocks.

rms_wlock(struct rmslock *rms)

Lock rms as a writer. If the lock is already taken, the current thread blocks. The rms_wlock()

function cannot be called recursively.

rms_runlock(struct rmslock *rms)

This function releases a shared lock previously acquired by rms_rlock().

rms_wunlock(struct rmslock *rms)

This function releases an exclusive lock previously acquired by rms_wlock().

rms_destroy(struct rmslock *rms)

This functions destroys a lock previously initialized with rms_init(). The rms lock must be

unlocked.

SEE ALSO
locking(9), mutex(9), panic(9), rwlock(9), sema(9), sleep(9), sx(9)

HISTORY
These functions appeared in FreeBSD 7.0.

AUTHORS
The rmlock facility was written by Stephan Uphoff. This manual page was written by Gleb Smirnoff for

rwlock and modified to reflect rmlock by Stephan Uphoff.

RMLOCK(9) FreeBSD Kernel Developer’s Manual RMLOCK(9)

FreeBSD 14.0-RELEASE-p11 April 12, 2021 FreeBSD 14.0-RELEASE-p11



BUGS
The rmlock implementation is currently not optimized for single processor systems.

rm_try_rlock() can fail transiently even when there is no writer, while another reader updates the state

on the local CPU.

The rmlock implementation uses a single per CPU list shared by all rmlocks in the system. If rmlocks

become popular, hashing to multiple per CPU queues may be needed to speed up the writer lock process.

RMLOCK(9) FreeBSD Kernel Developer’s Manual RMLOCK(9)

FreeBSD 14.0-RELEASE-p11 April 12, 2021 FreeBSD 14.0-RELEASE-p11


