
NAME
rpcgen - an RPC protocol compiler

SYNOPSIS
rpcgen infile

rpcgen [-a] [-b] [-C] [-Dname[=value]] [-i size] [-I -P [-K seconds]] [-L] [-M] [-N] [-T] [-Y pathname]

infile

rpcgen [-c | -h | -l | -m | -t | -Sc | -Ss | -Sm] [-o outfile] [infile]

rpcgen [-s nettype] [-o outfile] [infile]

rpcgen [-n netid] [-o outfile] [infile]

DESCRIPTION
The rpcgen utility is a tool that generates C code to implement an RPC protocol. The input to rpcgen is

a language similar to C known as RPC Language (Remote Procedure Call Language).

The rpcgen utility is normally used as in the first synopsis where it takes an input file and generates three

output files. If the infile is named proto.x, then rpcgen generates a header in proto.h, XDR routines in

proto_xdr.c, server-side stubs in proto_svc.c, and client-side stubs in proto_clnt.c. With the -T option, it

also generates the RPC dispatch table in proto_tbl.i.

The rpcgen utility can also generate sample client and server files that can be customized to suit a

particular application. The -Sc, -Ss and -Sm options generate sample client, server and makefile,

respectively. The -a option generates all files, including sample files. If the infile is proto.x, then the

client side sample file is written to proto_client.c, the server side sample file to proto_server.c and the

sample makefile to makefile.proto.

If option -I is set, the server created can be started both by the port monitors (for example, inetd(8)) or

by itself. When it is started by a port monitor, it creates servers only for the transport for which the file

descriptor 0 was passed. The name of the transport may be specified by setting up the environment

variable NLSPROVIDER. When the server generated by rpcgen is executed, it creates server handles

for all the transports specified in NETPATH environment variable, or if it is unset, it creates server

handles for all the visible transports from /etc/netconfig file. Note: the transports are chosen at run time

and not at compile time. When the server is self-started, it backgrounds itself by default. A special

define symbol RPC_SVC_FG can be used to run the server process in foreground.

The second synopsis provides special features which allow for the creation of more sophisticated RPC

servers. These features include support for user provided #defines and RPC dispatch tables. The entries

in the RPC dispatch table contain:

+o pointers to the service routine corresponding to that procedure,

+o a pointer to the input and output arguments,

RPCGEN(1) FreeBSD General Commands Manual RPCGEN(1)

FreeBSD 14.2-RELEASE September 2, 2005 FreeBSD 14.2-RELEASE

+o the size of these routines.

A server can use the dispatch table to check authorization and then to execute the service routine; a

client library may use it to deal with the details of storage management and XDR data conversion.

The other three synopses shown above are used when one does not want to generate all the output files,

but only a particular one. See the EXAMPLES section below for examples of rpcgen usage. When

rpcgen is executed with the -s option, it creates servers for that particular class of transports. When

executed with the -n option, it creates a server for the transport specified by netid. If infile is not

specified, rpcgen accepts the standard input.

The C preprocessor, cc -E is run on the input file before it is actually interpreted by rpcgen. For each

type of output file, rpcgen defines a special preprocessor symbol for use by the rpcgen programmer:

RPC_HDR

defined when compiling into headers

RPC_XDR

defined when compiling into XDR routines

RPC_SVC

defined when compiling into server-side stubs

RPC_CLNT

defined when compiling into client-side stubs

RPC_TBL

defined when compiling into RPC dispatch tables

Any line beginning with "%" is passed directly into the output file, uninterpreted by rpcgen. To specify

the path name of the C preprocessor use -Y flag.

For every data type referred to in infile, rpcgen assumes that there exists a routine with the string xdr_

prepended to the name of the data type. If this routine does not exist in the RPC/XDR library, it must be

provided. Providing an undefined data type allows customization of xdr(3) routines.

OPTIONS
The following options are available:

-a Generate all files, including sample files.

RPCGEN(1) FreeBSD General Commands Manual RPCGEN(1)

FreeBSD 14.2-RELEASE September 2, 2005 FreeBSD 14.2-RELEASE

-b Backward compatibility mode. Generate transport specific RPC code for older versions of the

operating system.

-c Compile into XDR routines.

-C Generate ANSI C code. This is always done, the flag is only provided for backwards

compatibility.

-Dname

-Dname=value

Define a symbol name. Equivalent to the #define directive in the source. If no value is given,

value is defined as 1. This option may be specified more than once.

-h Compile into C data-definitions (a header). -T option can be used in conjunction to produce a

header which supports RPC dispatch tables.

-i size Size at which to start generating inline code. This option is useful for optimization. The default

size is 5.

Note: in order to provide backwards compatibility with the older rpcgen on the FreeBSD

platform, the default is actually 0 (which means that inline code generation is disabled by

default). You must specify a non-zero value explicitly to override this default.

-I Compile support for inetd(8) in the server side stubs. Such servers can be self-started or can be

started by inetd(8). When the server is self-started, it backgrounds itself by default. A special

define symbol RPC_SVC_FG can be used to run the server process in foreground, or the user

may simply compile without the -I option.

If there are no pending client requests, the inetd(8) servers exit after 120 seconds (default). The

default can be changed with the -K option. All the error messages for inetd(8) servers are always

logged with syslog(3).

Note: Contrary to some systems, in FreeBSD this option is needed to generate servers that can be

invoked through portmonitors and inetd(8).

-K seconds

By default, services created using rpcgen and invoked through port monitors wait 120 seconds

after servicing a request before exiting. That interval can be changed using the -K flag. To

create a server that exits immediately upon servicing a request, use -K 0. To create a server that

RPCGEN(1) FreeBSD General Commands Manual RPCGEN(1)

FreeBSD 14.2-RELEASE September 2, 2005 FreeBSD 14.2-RELEASE

never exits, the appropriate argument is -K -1.

When monitoring for a server, some portmonitors always spawn a new process in response to a

service request. If it is known that a server will be used with such a monitor, the server should

exit immediately on completion. For such servers, rpcgen should be used with -K 0.

-l Compile into client-side stubs.

-L When the servers are started in foreground, use syslog(3) to log the server errors instead of

printing them on the standard error.

-m Compile into server-side stubs, but do not generate a "main" routine. This option is useful for

doing callback-routines and for users who need to write their own "main" routine to do

initialization.

-M Generate multithread-safe stubs for passing arguments and results between rpcgen generated

code and user written code. This option is useful for users who want to use threads in their code.

However, the rpc_svc_calls(3) functions are not yet MT-safe, which means that rpcgen generated

server-side code will not be MT-safe.

-N Allow procedures to have multiple arguments. It also uses the style of parameter passing that

closely resembles C. So, when passing an argument to a remote procedure, you do not have to

pass a pointer to the argument, but can pass the argument itself. This behavior is different from

the old style of rpcgen generated code. To maintain backward compatibility, this option is not

the default.

-n netid

Compile into server-side stubs for the transport specified by netid. There should be an entry for

netid in the netconfig database. This option may be specified more than once, so as to compile a

server that serves multiple transports.

-o outfile

Specify the name of the output file. If none is specified, standard output is used (-c, -h, -l, -m, -n,

-s, -Sc, -Sm, -Ss, and -t modes only).

-P Compile support for port monitors in the server side stubs.

Note: Contrary to some systems, in FreeBSD this option is needed to generate servers that can be

monitored.

RPCGEN(1) FreeBSD General Commands Manual RPCGEN(1)

FreeBSD 14.2-RELEASE September 2, 2005 FreeBSD 14.2-RELEASE

If the -I option has been specified, -P is turned off automatically.

-s nettype

Compile into server-side stubs for all the transports belonging to the class nettype. The

supported classes are netpath, visible, circuit_n, circuit_v, datagram_n, datagram_v, tcp, and udp

(see rpc(3) for the meanings associated with these classes). This option may be specified more

than once. Note: the transports are chosen at run time and not at compile time.

-Sc Generate sample client code that uses remote procedure calls.

-Sm Generate a sample Makefile which can be used for compiling the application.

-Ss Generate sample server code that uses remote procedure calls.

-t Compile into RPC dispatch table.

-T Generate the code to support RPC dispatch tables.

The options -c, -h, -l, -m, -s, -Sc, -Sm, -Ss, and -t are used exclusively to generate a particular

type of file, while the options -D and -T are global and can be used with the other options.

-Y pathname

Give the name of the directory where rpcgen will start looking for the C-preprocessor.

ENVIRONMENT
If the RPCGEN_CPP environment variable is set, its value is used as the command line of the C

preprocessor to be run on the input file.

EXAMPLES
The following example:

example% rpcgen -T prot.x

generates all the five files: prot.h, prot_clnt.c, prot_svc.c, prot_xdr.c and prot_tbl.i.

The following example sends the C data-definitions (header) to the standard output.

example% rpcgen -h prot.x

To send the test version of the -DTEST, server side stubs for all the transport belonging to the class

datagram_n to standard output, use:

example% rpcgen -s datagram_n -DTEST prot.x

RPCGEN(1) FreeBSD General Commands Manual RPCGEN(1)

FreeBSD 14.2-RELEASE September 2, 2005 FreeBSD 14.2-RELEASE

To create the server side stubs for the transport indicated by netid tcp, use:

example% rpcgen -n tcp -o prot_svc.c prot.x

SEE ALSO
cc(1), rpc(3), rpc_svc_calls(3), syslog(3), xdr(3), inetd(8)

The rpcgen chapter in the NETP manual.

RPCGEN(1) FreeBSD General Commands Manual RPCGEN(1)

FreeBSD 14.2-RELEASE September 2, 2005 FreeBSD 14.2-RELEASE

