
NAME
rwlock, rw_init, rw_init_flags, rw_destroy, rw_rlock, rw_wlock, rw_runlock, rw_wunlock, rw_unlock,

rw_try_rlock, rw_try_upgrade, rw_try_wlock, rw_downgrade, rw_sleep, rw_initialized, rw_wowned,

rw_assert, RW_SYSINIT, RW_SYSINIT_FLAGS - kernel reader/writer lock

SYNOPSIS
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/rwlock.h>

void

rw_init(struct rwlock *rw, const char *name);

void

rw_init_flags(struct rwlock *rw, const char *name, int opts);

void

rw_destroy(struct rwlock *rw);

void

rw_rlock(struct rwlock *rw);

void

rw_wlock(struct rwlock *rw);

int

rw_try_rlock(struct rwlock *rw);

int

rw_try_wlock(struct rwlock *rw);

void

rw_runlock(struct rwlock *rw);

void

rw_wunlock(struct rwlock *rw);

void

rw_unlock(struct rwlock *rw);

RWLOCK(9) FreeBSD Kernel Developer’s Manual RWLOCK(9)

FreeBSD 14.0-RELEASE-p6 November 11, 2017 FreeBSD 14.0-RELEASE-p6



int

rw_try_upgrade(struct rwlock *rw);

void

rw_downgrade(struct rwlock *rw);

int

rw_sleep(void *chan, struct rwlock *rw, int priority, const char *wmesg, int timo);

int

rw_initialized(const struct rwlock *rw);

int

rw_wowned(const struct rwlock *rw);

options INVARIANTS
options INVARIANT_SUPPORT
void

rw_assert(const struct rwlock *rw, int what);

#include <sys/kernel.h>

RW_SYSINIT(name, struct rwlock *rw, const char *desc);

RW_SYSINIT_FLAGS(name, struct rwlock *rw, const char *desc, int flags);

DESCRIPTION
Reader/writer locks allow shared access to protected data by multiple threads, or exclusive access by a

single thread. The threads with shared access are known as readers since they only read the protected

data. A thread with exclusive access is known as a writer since it can modify protected data.

Although reader/writer locks look very similar to sx(9) locks, their usage pattern is different.

Reader/writer locks can be treated as mutexes (see mutex(9)) with shared/exclusive semantics. Unlike

sx(9), an rwlock can be locked while holding a non-spin mutex, and an rwlock cannot be held while

sleeping. The rwlock locks have priority propagation like mutexes, but priority can be propagated only

to writers. This limitation comes from the fact that readers are anonymous. Another important property

is that readers can always recurse, and exclusive locks can be made recursive selectively.

Macros and Functions
rw_init(struct rwlock *rw, const char *name)

RWLOCK(9) FreeBSD Kernel Developer’s Manual RWLOCK(9)

FreeBSD 14.0-RELEASE-p6 November 11, 2017 FreeBSD 14.0-RELEASE-p6



Initialize structure located at rw as reader/writer lock, described by name name. The description

is used solely for debugging purposes. This function must be called before any other operations

on the lock.

rw_init_flags(struct rwlock *rw, const char *name, int opts)

Initialize the rw lock just like the rw_init() function, but specifying a set of optional flags to alter

the behaviour of rw, through the opts argument. It contains one or more of the following flags:

RW_DUPOK Witness should not log messages about duplicate locks being acquired.

RW_NOPROFILE Do not profile this lock.

RW_NOWITNESS

Instruct witness(4) to ignore this lock.

RW_QUIET Do not log any operations for this lock via ktr(4).

RW_RECURSE Allow threads to recursively acquire exclusive locks for rw.

RW_NEW If the kernel has been compiled with option INVARIANTS, rw_init_flags()

will assert that the rw has not been initialized multiple times without

intervening calls to rw_destroy() unless this option is specified.

rw_rlock(struct rwlock *rw)

Lock rw as a reader. If any thread holds this lock exclusively, the current thread blocks, and its

priority is propagated to the exclusive holder. The rw_rlock() function can be called when the

thread has already acquired reader access on rw. This is called "recursing on a lock".

rw_wlock(struct rwlock *rw)

Lock rw as a writer. If there are any shared owners of the lock, the current thread blocks. The

rw_wlock() function can be called recursively only if rw has been initialized with the

RW_RECURSE option enabled.

rw_try_rlock(struct rwlock *rw)

Try to lock rw as a reader. This function will return true if the operation succeeds, otherwise 0

will be returned.

rw_try_wlock(struct rwlock *rw)

Try to lock rw as a writer. This function will return true if the operation succeeds, otherwise 0

will be returned.

RWLOCK(9) FreeBSD Kernel Developer’s Manual RWLOCK(9)

FreeBSD 14.0-RELEASE-p6 November 11, 2017 FreeBSD 14.0-RELEASE-p6



rw_runlock(struct rwlock *rw)

This function releases a shared lock previously acquired by rw_rlock().

rw_wunlock(struct rwlock *rw)

This function releases an exclusive lock previously acquired by rw_wlock().

rw_unlock(struct rwlock *rw)

This function releases a shared lock previously acquired by rw_rlock() or an exclusive lock

previously acquired by rw_wlock().

rw_try_upgrade(struct rwlock *rw)

Attempt to upgrade a single shared lock to an exclusive lock. The current thread must hold a

shared lock of rw. This will only succeed if the current thread holds the only shared lock on rw,

and it only holds a single shared lock. If the attempt succeeds rw_try_upgrade() will return a

non-zero value, and the current thread will hold an exclusive lock. If the attempt fails

rw_try_upgrade() will return zero, and the current thread will still hold a shared lock.

rw_downgrade(struct rwlock *rw)

Convert an exclusive lock into a single shared lock. The current thread must hold an exclusive

lock of rw.

rw_sleep(void *chan, struct rwlock *rw, int priority, const char *wmesg, int timo)

Atomically release rw while waiting for an event. For more details on the parameters to this

function, see sleep(9).

rw_initialized(const struct rwlock *rw)

This function returns non-zero if rw has been initialized, and zero otherwise.

rw_destroy(struct rwlock *rw)

This functions destroys a lock previously initialized with rw_init(). The rw lock must be

unlocked.

rw_wowned(const struct rwlock *rw)

This function returns a non-zero value if the current thread owns an exclusive lock on rw.

rw_assert(const struct rwlock *rw, int what)

This function allows assertions specified in what to be made about rw. If the assertions are not

true and the kernel is compiled with options INVARIANTS and options
INVARIANT_SUPPORT, the kernel will panic. Currently the following base assertions are

supported:

RWLOCK(9) FreeBSD Kernel Developer’s Manual RWLOCK(9)

FreeBSD 14.0-RELEASE-p6 November 11, 2017 FreeBSD 14.0-RELEASE-p6



RA_LOCKED Assert that current thread holds either a shared or exclusive lock of rw.

RA_RLOCKED Assert that current thread holds a shared lock of rw.

RA_WLOCKED Assert that current thread holds an exclusive lock of rw.

RA_UNLOCKED Assert that current thread holds neither a shared nor exclusive lock of rw.

In addition, one of the following optional flags may be specified with RA_LOCKED,

RA_RLOCKED, or RA_WLOCKED:

RA_RECURSED Assert that the current thread holds a recursive lock of rw.

RA_NOTRECURSED Assert that the current thread does not hold a recursive lock of rw.

SEE ALSO
locking(9), mutex(9), panic(9), sema(9), sx(9)

HISTORY
These functions appeared in FreeBSD 7.0.

AUTHORS
The rwlock facility was written by John Baldwin. This manual page was written by Gleb Smirnoff.

BUGS
A kernel without WITNESS cannot assert whether the current thread does or does not hold a read lock.

RA_LOCKED and RA_RLOCKED can only assert that any thread holds a read lock. They cannot

ensure that the current thread holds a read lock. Further, RA_UNLOCKED can only assert that the

current thread does not hold a write lock.

Reader/writer is a bit of an awkward name. An rwlock can also be called a "Robert Watson" lock if

desired.

RWLOCK(9) FreeBSD Kernel Developer’s Manual RWLOCK(9)

FreeBSD 14.0-RELEASE-p6 November 11, 2017 FreeBSD 14.0-RELEASE-p6


