
NAME
sbuf, sbuf_new, sbuf_new_auto, sbuf_new_for_sysctl, sbuf_clear, sbuf_get_flags, sbuf_set_flags,

sbuf_clear_flags, sbuf_setpos, sbuf_bcat, sbuf_bcopyin, sbuf_bcpy, sbuf_cat, sbuf_copyin, sbuf_cpy,

sbuf_nl_terminate, sbuf_printf, sbuf_vprintf, sbuf_putc, sbuf_set_drain, sbuf_trim, sbuf_error,

sbuf_finish, sbuf_data, sbuf_len, sbuf_done, sbuf_delete, sbuf_start_section, sbuf_end_section,

sbuf_hexdump, sbuf_printf_drain, sbuf_putbuf - safe string composition

SYNOPSIS
#include <sys/types.h>
#include <sys/sbuf.h>

typedef int

(sbuf_drain_func)(void *arg, const char *data, int len);

struct sbuf *

sbuf_new(struct sbuf *s, char *buf, int length, int flags);

struct sbuf *

sbuf_new_auto(void);

void

sbuf_clear(struct sbuf *s);

int

sbuf_get_flags(struct sbuf *s);

void

sbuf_set_flags(struct sbuf *s, int flags);

void

sbuf_clear_flags(struct sbuf *s, int flags);

int

sbuf_setpos(struct sbuf *s, int pos);

int

sbuf_bcat(struct sbuf *s, const void *buf, size_t len);

int

sbuf_bcpy(struct sbuf *s, const void *buf, size_t len);

SBUF(9) FreeBSD Kernel Developer’s Manual SBUF(9)

FreeBSD 14.0-RELEASE-p6 August 26, 2020 FreeBSD 14.0-RELEASE-p6



int

sbuf_cat(struct sbuf *s, const char *str);

int

sbuf_cpy(struct sbuf *s, const char *str);

int

sbuf_nl_terminate(struct sbuf *);

int

sbuf_printf(struct sbuf *s, const char *fmt, ...);

int

sbuf_vprintf(struct sbuf *s, const char *fmt, va_list ap);

int

sbuf_putc(struct sbuf *s, int c);

void

sbuf_set_drain(struct sbuf *s, sbuf_drain_func *func, void *arg);

int

sbuf_trim(struct sbuf *s);

int

sbuf_error(struct sbuf *s);

int

sbuf_finish(struct sbuf *s);

char *

sbuf_data(struct sbuf *s);

ssize_t

sbuf_len(struct sbuf *s);

int

sbuf_done(struct sbuf *s);

void

SBUF(9) FreeBSD Kernel Developer’s Manual SBUF(9)

FreeBSD 14.0-RELEASE-p6 August 26, 2020 FreeBSD 14.0-RELEASE-p6



sbuf_delete(struct sbuf *s);

void

sbuf_start_section(struct sbuf *s, ssize_t *old_lenp);

ssize_t

sbuf_end_section(struct sbuf *s, ssize_t old_len, size_t pad, int c);

void

sbuf_hexdump(struct sbuf *sb, void *ptr, int length, const char *hdr, int flags);

int

sbuf_printf_drain(void *arg, const char *data, int len);

void

sbuf_putbuf(struct sbuf *s);

#ifdef _KERNEL

#include <sys/types.h>
#include <sys/sbuf.h>

int

sbuf_bcopyin(struct sbuf *s, const void *uaddr, size_t len);

int

sbuf_copyin(struct sbuf *s, const void *uaddr, size_t len);

#include <sys/sysctl.h>

struct sbuf *

sbuf_new_for_sysctl(struct sbuf *s, char *buf, int length, struct sysctl_req *req);

#endif /* _KERNEL */

DESCRIPTION
The sbuf family of functions allows one to safely allocate, compose and release strings in kernel or user

space.

Instead of arrays of characters, these functions operate on structures called sbufs, defined in

SBUF(9) FreeBSD Kernel Developer’s Manual SBUF(9)

FreeBSD 14.0-RELEASE-p6 August 26, 2020 FreeBSD 14.0-RELEASE-p6



<sys/sbuf.h>.

Any errors encountered during the allocation or composition of the string will be latched in the data

structure, making a single error test at the end of the composition sufficient to determine success or

failure of the entire process.

The sbuf_new() function initializes the sbuf pointed to by its first argument. If that pointer is NULL,

sbuf_new() allocates a struct sbuf using malloc(9). The buf argument is a pointer to a buffer in which to

store the actual string; if it is NULL, sbuf_new() will allocate one using malloc(9). The length is the

initial size of the storage buffer. The fourth argument, flags, may be comprised of the following flags:

SBUF_FIXEDLEN The storage buffer is fixed at its initial size. Attempting to extend the sbuf

beyond this size results in an overflow condition.

SBUF_AUTOEXTEND This indicates that the storage buffer may be extended as necessary, so long as

resources allow, to hold additional data.

SBUF_INCLUDENUL This causes the final nulterm byte to be counted in the length of the data.

SBUF_DRAINTOEOR Treat top-level sections started with sbuf_start_section() as a record boundary

marker that will be used during drain operations to avoid records being split.

If a record grows sufficiently large such that it fills the sbuf and therefore

cannot be drained without being split, an error of EDEADLK is set.

SBUF_NOWAIT Indicates that attempts to extend the storage buffer should fail in low memory

conditions, like malloc(9) M_NOWAIT.

Note that if buf is not NULL, it must point to an array of at least length characters. The result of

accessing that array directly while it is in use by the sbuf is undefined.

The sbuf_new_auto() function is a shortcut for creating a completely dynamic sbuf. It is the equivalent

of calling sbuf_new() with values NULL, NULL, 0, and SBUF_AUTOEXTEND.

The sbuf_new_for_sysctl() function will set up an sbuf with a drain function to use SYSCTL_OUT()

when the internal buffer fills. Note that if the various functions which append to an sbuf are used while

a non-sleepable lock is held, the user buffer should be wired using sysctl_wire_old_buffer().

The sbuf_delete() function clears the sbuf and frees any memory allocated for it. There must be a call to

sbuf_delete() for every call to sbuf_new(). Any attempt to access the sbuf after it has been deleted will

fail.

SBUF(9) FreeBSD Kernel Developer’s Manual SBUF(9)

FreeBSD 14.0-RELEASE-p6 August 26, 2020 FreeBSD 14.0-RELEASE-p6



The sbuf_clear() function invalidates the contents of the sbuf and resets its position to zero.

The sbuf_get_flags() function returns the current user flags. The sbuf_set_flags() and sbuf_clear_flags()

functions set or clear one or more user flags, respectively. The user flags are described under the

sbuf_new() function.

The sbuf_setpos() function sets the sbuf’s end position to pos, which is a value between zero and the

current position in the buffer. It can only truncate the sbuf to the new position.

The sbuf_bcat() function appends the first len bytes from the buffer buf to the sbuf.

The sbuf_bcopyin() function copies len bytes from the specified userland address into the sbuf.

The sbuf_bcpy() function replaces the contents of the sbuf with the first len bytes from the buffer buf.

The sbuf_cat() function appends the NUL-terminated string str to the sbuf at the current position.

The sbuf_set_drain() function sets a drain function func for the sbuf, and records a pointer arg to be

passed to the drain on callback. The drain function cannot be changed while sbuf_len is non-zero.

The registered drain function sbuf_drain_func will be called with the argument arg provided to

sbuf_set_drain(), a pointer data to a byte string that is the contents of the sbuf, and the length len of the

data. If the drain function exists, it will be called when the sbuf internal buffer is full, or on behalf of

sbuf_finish(). The drain function may drain some or all of the data, but must drain at least 1 byte. The

return value from the drain function, if positive, indicates how many bytes were drained. If negative, the

return value indicates the negative error code which will be returned from this or a later call to

sbuf_finish(). If the returned drained length is 0, an error of EDEADLK is set. To do unbuffered

draining, initialize the sbuf with a two-byte buffer. The drain will be called for every byte added to the

sbuf. The sbuf_bcopyin(), sbuf_bcpy(), sbuf_clear(), sbuf_copyin(), sbuf_cpy(), sbuf_trim(),

sbuf_data(), and sbuf_len() functions cannot be used on an sbuf with a drain.

The sbuf_copyin() function copies a NUL-terminated string from the specified userland address into the

sbuf. If the len argument is non-zero, no more than len characters (not counting the terminating NUL)

are copied; otherwise the entire string, or as much of it as can fit in the sbuf, is copied.

The sbuf_cpy() function replaces the contents of the sbuf with those of the NUL-terminated string str.

This is equivalent to calling sbuf_cat() with a fresh sbuf or one which position has been reset to zero

with sbuf_clear() or sbuf_setpos().

The sbuf_nl_terminate() function appends a trailing newline character, if the current line is non-empty

SBUF(9) FreeBSD Kernel Developer’s Manual SBUF(9)

FreeBSD 14.0-RELEASE-p6 August 26, 2020 FreeBSD 14.0-RELEASE-p6



and not already terminated by a newline character.

The sbuf_printf() function formats its arguments according to the format string pointed to by fmt and

appends the resulting string to the sbuf at the current position.

The sbuf_vprintf() function behaves the same as sbuf_printf() except that the arguments are obtained

from the variable-length argument list ap.

The sbuf_putc() function appends the character c to the sbuf at the current position.

The sbuf_trim() function removes trailing whitespace from the sbuf.

The sbuf_error() function returns any error value that the sbuf may have accumulated, either from the

drain function, or ENOMEM if the sbuf overflowed. This function is generally not needed and instead

the error code from sbuf_finish() is the preferred way to discover whether an sbuf had an error.

The sbuf_finish() function will call the attached drain function if one exists until all the data in the sbuf

is flushed. If there is no attached drain, sbuf_finish() NUL-terminates the sbuf. In either case it marks

the sbuf as finished, which means that it may no longer be modified using sbuf_setpos(), sbuf_cat(),
sbuf_cpy(), sbuf_printf() or sbuf_putc(), until sbuf_clear() is used to reset the sbuf.

The sbuf_data() function returns the actual string; sbuf_data() only works on a finished sbuf. The

sbuf_len() function returns the length of the string. For an sbuf with an attached drain, sbuf_len()

returns the length of the un-drained data. sbuf_done() returns non-zero if the sbuf is finished.

The sbuf_start_section() and sbuf_end_section() functions may be used for automatic section alignment.

The arguments pad and c specify the padding size and a character used for padding. The arguments

old_lenp and old_len are to save and restore the current section length when nested sections are used.

For the top level section NULL and -1 can be specified for old_lenp and old_len respectively.

The sbuf_hexdump() function prints an array of bytes to the supplied sbuf, along with an ASCII

representation of the bytes if possible. See the hexdump(3) man page for more details on the interface.

The sbuf_printf_drain() function is a drain function that will call printf, or log to the console. The

argument arg must be either NULL, or a valid pointer to a size_t. If arg is not NULL, the total bytes

drained will be added to the value pointed to by arg.

The sbuf_putbuf() function printfs the sbuf to stdout if in userland, and to the console and log if in the

kernel. The sbuf must be finished before calling sbuf_putbuf(). It does not drain the buffer or update

any pointers.

SBUF(9) FreeBSD Kernel Developer’s Manual SBUF(9)

FreeBSD 14.0-RELEASE-p6 August 26, 2020 FreeBSD 14.0-RELEASE-p6



NOTES
If an operation caused an sbuf to overflow, most subsequent operations on it will fail until the sbuf is

finished using sbuf_finish() or reset using sbuf_clear(), or its position is reset to a value between 0 and

one less than the size of its storage buffer using sbuf_setpos(), or it is reinitialized to a sufficiently short

string using sbuf_cpy().

Drains in user-space will not always function as indicated. While the drain function will be called

immediately on overflow from the sbuf_putc, sbuf_bcat, sbuf_cat functions, sbuf_printf and

sbuf_vprintf currently have no way to determine whether there will be an overflow until after it occurs,

and cannot do a partial expansion of the format string. Thus when using libsbuf the buffer may be

extended to allow completion of a single printf call, even though a drain is attached.

RETURN VALUES
The sbuf_new() function returns NULL if it failed to allocate a storage buffer, and a pointer to the new

sbuf otherwise.

The sbuf_setpos() function returns -1 if pos was invalid, and zero otherwise.

The sbuf_bcat(), sbuf_cat(), sbuf_cpy(), sbuf_printf(), sbuf_putc(), and sbuf_trim() functions all return

-1 if the buffer overflowed, and zero otherwise.

The sbuf_error() function returns a non-zero value if the buffer has an overflow or drain error, and zero

otherwise.

The sbuf_len() function returns -1 if the buffer overflowed.

The sbuf_copyin() function returns -1 if copying string from userland failed, and number of bytes copied

otherwise.

The sbuf_end_section() function returns the section length or -1 if the buffer has an error.

The sbuf_finish(9) function (the kernel version) returns ENOMEM if the sbuf overflowed before being

finished, or returns the error code from the drain if one is attached.

The sbuf_finish(3) function (the userland version) will return zero for success and -1 and set errno on

error.

EXAMPLES
#include <sys/types.h>

#include <sys/sbuf.h>

SBUF(9) FreeBSD Kernel Developer’s Manual SBUF(9)

FreeBSD 14.0-RELEASE-p6 August 26, 2020 FreeBSD 14.0-RELEASE-p6



struct sbuf *sb;

sb = sbuf_new_auto();

sbuf_cat(sb, "Customers found:\n");

TAILQ_FOREACH(foo, &foolist, list) {

sbuf_printf(sb, " %4d %s\n", foo->index, foo->name);

sbuf_printf(sb, " Address: %s\n", foo->address);

sbuf_printf(sb, " Zip: %s\n", foo->zipcode);

}

if (sbuf_finish(sb) != 0) /* Check for any and all errors */

err(1, "Could not generate message");

transmit_msg(sbuf_data(sb), sbuf_len(sb));

sbuf_delete(sb);

SEE ALSO
hexdump(3), printf(3), strcat(3), strcpy(3), copyin(9), copyinstr(9), printf(9)

HISTORY
The sbuf family of functions first appeared in FreeBSD 4.4.

AUTHORS
The sbuf family of functions was designed by Poul-Henning Kamp <phk@FreeBSD.org> and

implemented by Dag-Erling Sm/orgrav <des@FreeBSD.org>. Additional improvements were suggested

by Justin T. Gibbs <gibbs@FreeBSD.org>. Auto-extend support added by Kelly Yancey

<kbyanc@FreeBSD.org>. Drain functionality added by Matthew Fleming <mdf@FreeBSD.org>.

This manual page was written by Dag-Erling Sm/orgrav <des@FreeBSD.org>.

SBUF(9) FreeBSD Kernel Developer’s Manual SBUF(9)

FreeBSD 14.0-RELEASE-p6 August 26, 2020 FreeBSD 14.0-RELEASE-p6


