
NAME
scalar - A tool for managing large Git repositories

SYNOPSIS
scalar clone [--single-branch] [--branch <main-branch>] [--full-clone]

[--[no-]src] <url> [<enlistment>]

scalar list

scalar register [<enlistment>]

scalar unregister [<enlistment>]

scalar run (all | config | commit-graph | fetch | loose-objects | pack-files) [<enlistment>]

scalar reconfigure [--all | <enlistment>]

scalar diagnose [<enlistment>]

scalar delete <enlistment>

DESCRIPTION
Scalar is a repository management tool that optimizes Git for use in large repositories. Scalar improves

performance by configuring advanced Git settings, maintaining repositories in the background, and

helping to reduce data sent across the network.

An important Scalar concept is the enlistment: this is the top-level directory of the project. It usually

contains the subdirectory src/ which is a Git worktree. This encourages the separation between tracked

files (inside src/) and untracked files, such as build artifacts (outside src/). When registering an existing

Git worktree with Scalar whose name is not src, the enlistment will be identical to the worktree.

The scalar command implements various subcommands, and different options depending on the

subcommand. With the exception of clone, list and reconfigure --all, all subcommands expect to be run

in an enlistment.

The following options can be specified before the subcommand:

-C <directory>

Before running the subcommand, change the working directory. This option imitates the same

option of git(1).

-c <key>=<value>

For the duration of running the specified subcommand, configure this setting. This option imitates

the same option of git(1).

COMMANDS

SCALAR(1) Git Manual SCALAR(1)

Git 2.45.2 2024-05-30 SCALAR(1)

Clone
clone [<options>] <url> [<enlistment>]

Clones the specified repository, similar to git-clone(1). By default, only commit and tree objects

are cloned. Once finished, the worktree is located at <enlistment>/src.

The sparse-checkout feature is enabled (except when run with --full-clone) and the only files

present are those in the top-level directory. Use git sparse-checkout set to expand the set of

directories you want to see, or git sparse-checkout disable to expand to all files (see git-sparse-
checkout(1) for more details). You can explore the subdirectories outside your sparse-checkout by

using git ls-tree HEAD[:<directory>].

-b <name>, --branch <name>

Instead of checking out the branch pointed to by the cloned repository’s HEAD, check out the

<name> branch instead.

--[no-]single-branch

Clone only the history leading to the tip of a single branch, either specified by the --branch option

or the primary branch remote’s HEAD points at.

Further fetches into the resulting repository will only update the remote-tracking branch for the

branch this option was used for the initial cloning. If the HEAD at the remote did not point at any

branch when --single-branch clone was made, no remote-tracking branch is created.

--[no-]src

By default, scalar clone places the cloned repository within a <entlistment>/src directory. Use

--no-src to place the cloned repository directly in the <enlistment> directory.

--[no-]full-clone

A sparse-checkout is initialized by default. This behavior can be turned off via --full-clone.

List
list

List enlistments that are currently registered by Scalar. This subcommand does not need to be run

inside an enlistment.

Register
register [<enlistment>]

Adds the enlistment’s repository to the list of registered repositories and starts background

maintenance. If <enlistment> is not provided, then the enlistment associated with the current

working directory is registered.

SCALAR(1) Git Manual SCALAR(1)

Git 2.45.2 2024-05-30 SCALAR(1)

Note: when this subcommand is called in a worktree that is called src/, its parent directory is

considered to be the Scalar enlistment. If the worktree is not called src/, it itself will be considered

to be the Scalar enlistment.

Unregister
unregister [<enlistment>]

Remove the specified repository from the list of repositories registered with Scalar and stop the

scheduled background maintenance.

Run
scalar run (all | config | commit-graph | fetch | loose-objects | pack-files) [<enlistment>]

Run the given maintenance task (or all tasks, if all was specified). Except for all and config, this

subcommand simply hands off to git-maintenance(1) (mapping fetch to prefetch and pack-files to

incremental-repack).

These tasks are run automatically as part of the scheduled maintenance, as soon as the repository

is registered with Scalar. It should therefore not be necessary to run this subcommand manually.

The config task is specific to Scalar and configures all those opinionated default settings that make

Git work more efficiently with large repositories. As this task is run as part of scalar clone
automatically, explicit invocations of this task are rarely needed.

Reconfigure
After a Scalar upgrade, or when the configuration of a Scalar enlistment was somehow corrupted or

changed by mistake, this subcommand allows to reconfigure the enlistment.

With the --all option, all enlistments currently registered with Scalar will be reconfigured. Use this

option after each Scalar upgrade.

Diagnose
diagnose [<enlistment>]

When reporting issues with Scalar, it is often helpful to provide the information gathered by this

command, including logs and certain statistics describing the data shape of the current enlistment.

The output of this command is a .zip file that is written into a directory adjacent to the worktree in

the src directory.

Delete
delete <enlistment>

This subcommand lets you delete an existing Scalar enlistment from your local file system,

SCALAR(1) Git Manual SCALAR(1)

Git 2.45.2 2024-05-30 SCALAR(1)

unregistering the repository.

SEE ALSO
git-clone(1), git-maintenance(1).

GIT
Part of the git(1) suite

SCALAR(1) Git Manual SCALAR(1)

Git 2.45.2 2024-05-30 SCALAR(1)

