
NAME
scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf - input format conversion

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int

scanf(const char * restrict format, ...);

int

fscanf(FILE * restrict stream, const char * restrict format, ...);

int

sscanf(const char * restrict str, const char * restrict format, ...);

#include <stdarg.h>

int

vscanf(const char * restrict format, va_list ap);

int

vsscanf(const char * restrict str, const char * restrict format, va_list ap);

int

vfscanf(FILE * restrict stream, const char * restrict format, va_list ap);

DESCRIPTION
The scanf() family of functions scans input according to a format as described below. This format may

contain conversion specifiers; the results from such conversions, if any, are stored through the pointer

arguments. The scanf() function reads input from the standard input stream stdin, fscanf() reads input

from the stream pointer stream, and sscanf() reads its input from the character string pointed to by str.

The vfscanf() function is analogous to vfprintf(3) and reads input from the stream pointer stream using a

variable argument list of pointers (see stdarg(3)). The vscanf() function scans a variable argument list

from the standard input and the vsscanf() function scans it from a string; these are analogous to the

vprintf() and vsprintf() functions respectively. Each successive pointer argument must correspond

properly with each successive conversion specifier (but see the * conversion below). All conversions

are introduced by the % (percent sign) character. The format string may also contain other characters.

SCANF(3) FreeBSD Library Functions Manual SCANF(3)

FreeBSD 14.2-RELEASE September 5, 2023 FreeBSD 14.2-RELEASE

White space (such as blanks, tabs, or newlines) in the format string match any amount of white space,

including none, in the input. Everything else matches only itself. Scanning stops when an input

character does not match such a format character. Scanning also stops when an input conversion cannot

be made (see below).

CONVERSIONS
Following the % character introducing a conversion there may be a number of flag characters, as

follows:

* Suppresses assignment. The conversion that follows occurs as usual, but no pointer is used;

the result of the conversion is simply discarded.

hh Indicates that the conversion will be one of bdioux or n and the next pointer is a pointer to a

char (rather than int).

h Indicates that the conversion will be one of bdioux or n and the next pointer is a pointer to a

short int (rather than int).

l (ell) Indicates that the conversion will be one of bdioux or n and the next pointer is a pointer to a

long int (rather than int), that the conversion will be one of a, e, f, or g and the next pointer is

a pointer to double (rather than float), or that the conversion will be one of c, s or [and the

next pointer is a pointer to an array of wchar_t (rather than char).

ll (ell ell)

Indicates that the conversion will be one of bdioux or n and the next pointer is a pointer to a

long long int (rather than int).

L Indicates that the conversion will be one of a, e, f, or g and the next pointer is a pointer to long

double.

j Indicates that the conversion will be one of bdioux or n and the next pointer is a pointer to a

intmax_t (rather than int).

t Indicates that the conversion will be one of bdioux or n and the next pointer is a pointer to a

ptrdiff_t (rather than int).

wN (where N is 8, 16, 32, or 64) Indicates that the conversion will be one of bdioux or n and the

next pointer is a pointer to a intN_t (rather than int).

wfN (where N is 8, 16, 32, or 64) Indicates that the conversion will be one of bdioux or n and the

SCANF(3) FreeBSD Library Functions Manual SCANF(3)

FreeBSD 14.2-RELEASE September 5, 2023 FreeBSD 14.2-RELEASE

next pointer is a pointer to a int_fastN_t (rather than int).

z Indicates that the conversion will be one of bdioux or n and the next pointer is a pointer to a

size_t (rather than int).

q (deprecated.) Indicates that the conversion will be one of bdioux or n and the next pointer is a

pointer to a long long int (rather than int).

In addition to these flags, there may be an optional maximum field width, expressed as a decimal

integer, between the % and the conversion. If no width is given, a default of "infinity" is used (with one

exception, below); otherwise at most this many bytes are scanned in processing the conversion. In the

case of the lc, ls and l[conversions, the field width specifies the maximum number of multibyte

characters that will be scanned. Before conversion begins, most conversions skip white space; this white

space is not counted against the field width.

The following conversions are available:

% Matches a literal ‘%’. That is, "%%" in the format string matches a single input ‘%’ character.

No conversion is done, and assignment does not occur.

b, B Matches an optionally signed binary integer; the next pointer must be a pointer to unsigned int.

d Matches an optionally signed decimal integer; the next pointer must be a pointer to int.

i Matches an optionally signed integer; the next pointer must be a pointer to int. The integer is

read in base 2 if it begins with ‘0b’ or ‘0B’, in base 16 if it begins with ‘0x’ or ‘0X’, in base 8 if

it begins with ‘0’, and in base 10 otherwise. Only characters that correspond to the base are

used.

o Matches an octal integer; the next pointer must be a pointer to unsigned int.

u Matches an optionally signed decimal integer; the next pointer must be a pointer to unsigned int.

x, X Matches an optionally signed hexadecimal integer; the next pointer must be a pointer to

unsigned int.

a, A, e, E, f, F, g, G
Matches a floating-point number in the style of strtod(3). The next pointer must be a pointer to

float (unless l or L is specified.)

SCANF(3) FreeBSD Library Functions Manual SCANF(3)

FreeBSD 14.2-RELEASE September 5, 2023 FreeBSD 14.2-RELEASE

s Matches a sequence of non-white-space characters; the next pointer must be a pointer to char,

and the array must be large enough to accept all the sequence and the terminating NUL

character. The input string stops at white space or at the maximum field width, whichever

occurs first.

If an l qualifier is present, the next pointer must be a pointer to wchar_t, into which the input

will be placed after conversion by mbrtowc(3).

S The same as ls.

c Matches a sequence of width count characters (default 1); the next pointer must be a pointer to

char, and there must be enough room for all the characters (no terminating NUL is added). The

usual skip of leading white space is suppressed. To skip white space first, use an explicit space

in the format.

If an l qualifier is present, the next pointer must be a pointer to wchar_t, into which the input

will be placed after conversion by mbrtowc(3).

C The same as lc.

[Matches a nonempty sequence of characters from the specified set of accepted characters; the

next pointer must be a pointer to char, and there must be enough room for all the characters in

the string, plus a terminating NUL character. The usual skip of leading white space is

suppressed. The string is to be made up of characters in (or not in) a particular set; the set is

defined by the characters between the open bracket [character and a close bracket] character.

The set excludes those characters if the first character after the open bracket is a circumflex ^.

To include a close bracket in the set, make it the first character after the open bracket or the

circumflex; any other position will end the set. The hyphen character - is also special; when

placed between two other characters, it adds all intervening characters to the set. To include a

hyphen, make it the last character before the final close bracket. For instance, ‘[^]0-9-]’ means

the set "everything except close bracket, zero through nine, and hyphen". The string ends with

the appearance of a character not in the (or, with a circumflex, in) set or when the field width

runs out.

If an l qualifier is present, the next pointer must be a pointer to wchar_t, into which the input

will be placed after conversion by mbrtowc(3).

p Matches a pointer value (as printed by ‘%p’ in printf(3)); the next pointer must be a pointer to

void.

SCANF(3) FreeBSD Library Functions Manual SCANF(3)

FreeBSD 14.2-RELEASE September 5, 2023 FreeBSD 14.2-RELEASE

n Nothing is expected; instead, the number of characters consumed thus far from the input is

stored through the next pointer, which must be a pointer to int. This is not a conversion,

although it can be suppressed with the * flag.

The decimal point character is defined in the program’s locale (category LC_NUMERIC).

For backwards compatibility, a "conversion" of ‘%\0’ causes an immediate return of EOF.

RETURN VALUES
These functions return the number of input items assigned, which can be fewer than provided for, or

even zero, in the event of a matching failure. Zero indicates that, while there was input available, no

conversions were assigned; typically this is due to an invalid input character, such as an alphabetic

character for a ‘%d’ conversion. The value EOF is returned if an input failure occurs before any

conversion such as an end-of-file occurs. If an error or end-of-file occurs after conversion has begun,

the number of conversions which were successfully completed is returned.

SEE ALSO
getc(3), mbrtowc(3), printf(3), strtod(3), strtol(3), strtoul(3), wscanf(3)

STANDARDS
The functions fscanf(), scanf(), sscanf(), vfscanf(), vscanf() and vsscanf() conform to ISO/IEC

9899:1999 ("ISO C99").

HISTORY
The functions scanf(), fscanf(), and sscanf() first appeared in Version 7 AT&T UNIX, and vscanf(),
vsscanf(), and vfscanf() in 4.3BSD-Reno.

BUGS
Earlier implementations of scanf treated %D, %E, %F, %O and %X as their lowercase equivalents with

an l modifier. In addition, scanf treated an unknown conversion character as %d or %D, depending on

its case. This functionality has been removed.

Numerical strings are truncated to 512 characters; for example, %f and %d are implicitly %512f and

%512d.

The %n$ modifiers for positional arguments are not implemented.

The scanf family of functions do not correctly handle multibyte characters in the format argument.

SCANF(3) FreeBSD Library Functions Manual SCANF(3)

FreeBSD 14.2-RELEASE September 5, 2023 FreeBSD 14.2-RELEASE

