
NAME
sema, sema_init, sema_destroy, sema_post, sema_wait, sema_timedwait, sema_trywait, sema_value -

kernel counting semaphore

SYNOPSIS
#include <sys/types.h>
#include <sys/lock.h>
#include <sys/sema.h>

void

sema_init(struct sema *sema, int value, const char *description);

void

sema_destroy(struct sema *sema);

void

sema_post(struct sema *sema);

void

sema_wait(struct sema *sema);

int

sema_timedwait(struct sema *sema, int timo);

int

sema_trywait(struct sema *sema);

int

sema_value(struct sema *sema);

DESCRIPTION
Counting semaphores provide a mechanism for synchronizing access to a pool of resources. Unlike

mutexes, semaphores do not have the concept of an owner, so they can also be useful in situations where

one thread needs to acquire a resource, and another thread needs to release it. Each semaphore has an

integer value associated with it. Posting (incrementing) always succeeds, but waiting (decrementing)

can only successfully complete if the resulting value of the semaphore is greater than or equal to zero.

Semaphores should not be used where mutexes and condition variables will suffice. Semaphores are a

more complex synchronization mechanism than mutexes and condition variables, and are not as

efficient.

SEMA(9) FreeBSD Kernel Developer’s Manual SEMA(9)

FreeBSD 14.0-RELEASE-p6 February 1, 2006 FreeBSD 14.0-RELEASE-p6



Semaphores are created with sema_init(), where sema is a pointer to space for a struct sema, value is the

initial value of the semaphore, and description is a pointer to a null-terminated character string that

describes the semaphore. Semaphores are destroyed with sema_destroy(). A semaphore is posted

(incremented) with sema_post(). A semaphore is waited on (decremented) with sema_wait(),
sema_timedwait(), or sema_trywait(). The timo argument to sema_timedwait() specifies the minimum

time in ticks to wait before returning with failure. sema_value() is used to read the current value of the

semaphore.

RETURN VALUES
The sema_value() function returns the current value of the semaphore.

If decrementing the semaphore would result in its value being negative, sema_trywait() returns 0 to

indicate failure. Otherwise, a non-zero value is returned to indicate success.

The sema_timedwait() function returns 0 if waiting on the semaphore succeeded; otherwise a non-zero

error code is returned.

ERRORS
The sema_timedwait() function will fail if:

[EWOULDBLOCK] Timeout expired.

SEE ALSO
condvar(9), locking(9), mtx_pool(9), mutex(9), rwlock(9), sx(9)

SEMA(9) FreeBSD Kernel Developer’s Manual SEMA(9)

FreeBSD 14.0-RELEASE-p6 February 1, 2006 FreeBSD 14.0-RELEASE-p6


