
NAME
sendfile - send a file to a socket

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/uio.h>

int

sendfile(int fd, int s, off_t offset, size_t nbytes, struct sf_hdtr *hdtr, off_t *sbytes, int flags);

DESCRIPTION
The sendfile() system call sends a regular file or shared memory object specified by descriptor fd out a

stream socket specified by descriptor s.

The offset argument specifies where to begin in the file. Should offset fall beyond the end of file, the

system will return success and report 0 bytes sent as described below. The nbytes argument specifies

how many bytes of the file should be sent, with 0 having the special meaning of send until the end of file

has been reached.

An optional header and/or trailer can be sent before and after the file data by specifying a pointer to a

struct sf_hdtr, which has the following structure:

struct sf_hdtr {

struct iovec *headers; /* pointer to header iovecs */

int hdr_cnt; /* number of header iovecs */

struct iovec *trailers; /* pointer to trailer iovecs */

int trl_cnt; /* number of trailer iovecs */

};

The headers and trailers pointers, if non-NULL, point to arrays of struct iovec structures. See the

writev() system call for information on the iovec structure. The number of iovecs in these arrays is

specified by hdr_cnt and trl_cnt.

If non-NULL, the system will write the total number of bytes sent on the socket to the variable pointed

to by sbytes.

SENDFILE(2) FreeBSD System Calls Manual SENDFILE(2)

FreeBSD 14.2-RELEASE March 30, 2020 FreeBSD 14.2-RELEASE



The least significant 16 bits of flags argument is a bitmap of these values:

SF_NODISKIO This flag causes sendfile to return EBUSY instead of blocking when a

busy page is encountered. This rare situation can happen if some

other process is now working with the same region of the file. It is

advised to retry the operation after a short period.

Note that in older FreeBSD versions the SF_NODISKIO had slightly

different notion. The flag prevented sendfile to run I/O operations in

case if an invalid (not cached) page is encountered, thus avoiding

blocking on I/O. Starting with FreeBSD 11 sendfile sending files off

the ffs(7) filesystem does not block on I/O (see IMPLEMENTATION

NOTES ), so the condition no longer applies. However, it is safe if an

application utilizes SF_NODISKIO and on EBUSY performs the

same action as it did in older FreeBSD versions, e.g., aio_read(2),

read(2) or sendfile in a different context.

SF_NOCACHE The data sent to socket will not be cached by the virtual memory

system, and will be freed directly to the pool of free pages.

SF_SYNC sendfile sleeps until the network stack no longer references the VM

pages of the file, making subsequent modifications to it safe. Please

note that this is not a guarantee that the data has actually been sent.

SF_USER_READAHEAD sendfile has some internal heuristics to do readahead when sending

data. This flag forces sendfile to override any heuristically calculated

readahead and use exactly the application specified readahead. See

SETTING READAHEAD for more details on readahead.

When using a socket marked for non-blocking I/O, sendfile() may send fewer bytes than requested. In

this case, the number of bytes successfully written is returned in *sbytes (if specified), and the error

EAGAIN is returned.

SETTING READAHEAD
sendfile uses internal heuristics based on request size and file system layout to do readahead.

Additionally application may request extra readahead. The most significant 16 bits of flags specify

amount of pages that sendfile may read ahead when reading the file. A macro SF_FLAGS() is provided

to combine readahead amount and flags. An example showing specifying readahead of 16 pages and

SF_NOCACHE flag:

SENDFILE(2) FreeBSD System Calls Manual SENDFILE(2)

FreeBSD 14.2-RELEASE March 30, 2020 FreeBSD 14.2-RELEASE



SF_FLAGS(16, SF_NOCACHE)

sendfile will use either application specified readahead or internally calculated, whichever is bigger.

Setting flag SF_USER_READAHEAD would turn off any heuristics and set maximum possible

readahead length to the number of pages specified via flags.

IMPLEMENTATION NOTES
The FreeBSD implementation of sendfile() does not block on disk I/O when it sends a file off the ffs(7)

filesystem. The syscall returns success before the actual I/O completes, and data is put into the socket

later unattended. However, the order of data in the socket is preserved, so it is safe to do further writes

to the socket.

The FreeBSD implementation of sendfile() is "zero-copy", meaning that it has been optimized so that

copying of the file data is avoided.

TUNING
physical paging buffers
sendfile() uses vnode pager to read file pages into memory. The pager uses a pool of physical buffers to

run its I/O operations. When system runs out of pbufs, sendfile will block and report state "zonelimit".

Size of the pool can be tuned with vm.vnode_pbufs loader.conf(5) tunable and can be checked with

sysctl(8) OID of the same name at runtime.

sendfile(2) buffers
On some architectures, this system call internally uses a special sendfile() buffer (struct sf_buf) to

handle sending file data to the client. If the sending socket is blocking, and there are not enough

sendfile() buffers available, sendfile() will block and report a state of "sfbufa". If the sending socket is

non-blocking and there are not enough sendfile() buffers available, the call will block and wait for the

necessary buffers to become available before finishing the call.

The number of sf_buf’s allocated should be proportional to the number of nmbclusters used to send data

to a client via sendfile(). Tune accordingly to avoid blocking! Busy installations that make extensive

use of sendfile() may want to increase these values to be inline with their kern.ipc.nmbclusters (see

tuning(7) for details).

The number of sendfile() buffers available is determined at boot time by either the kern.ipc.nsfbufs

loader.conf(5) variable or the NSFBUFS kernel configuration tunable. The number of sendfile() buffers

scales with kern.maxusers. The kern.ipc.nsfbufsused and kern.ipc.nsfbufspeak read-only sysctl(8)

variables show current and peak sendfile() buffers usage respectively. These values may also be viewed

through netstat -m.

SENDFILE(2) FreeBSD System Calls Manual SENDFILE(2)

FreeBSD 14.2-RELEASE March 30, 2020 FreeBSD 14.2-RELEASE



If sysctl(8) OID kern.ipc.nsfbufs doesn’t exist, your architecture does not need to use sendfile() buffers

because their task can be efficiently performed by the generic virtual memory structures.

RETURN VALUES
The sendfile() function returns the value 0 if successful; otherwise the value -1 is returned and the global

variable errno is set to indicate the error.

ERRORS
[EAGAIN] The socket is marked for non-blocking I/O and not all data was sent due to the

socket buffer being filled. If specified, the number of bytes successfully sent will

be returned in *sbytes.

[EBADF] The fd argument is not a valid file descriptor.

[EBADF] The s argument is not a valid socket descriptor.

[EBUSY] A busy page was encountered and SF_NODISKIO had been specified. Partial

data may have been sent.

[EFAULT] An invalid address was specified for an argument.

[EINTR] A signal interrupted sendfile() before it could be completed. If specified, the

number of bytes successfully sent will be returned in *sbytes.

[EINVAL] The fd argument is not a regular file.

[EINVAL] The s argument is not a SOCK_STREAM type socket.

[EINVAL] The offset argument is negative.

[EIO] An error occurred while reading from fd.

[EINTEGRITY] Corrupted data was detected while reading from fd.

[ENOTCAPABLE] The fd or the s argument has insufficient rights.

[ENOBUFS] The system was unable to allocate an internal buffer.

[ENOTCONN] The s argument points to an unconnected socket.

SENDFILE(2) FreeBSD System Calls Manual SENDFILE(2)

FreeBSD 14.2-RELEASE March 30, 2020 FreeBSD 14.2-RELEASE



[ENOTSOCK] The s argument is not a socket.

[EOPNOTSUPP] The file system for descriptor fd does not support sendfile().

[EPIPE] The socket peer has closed the connection.

SEE ALSO
netstat(1), open(2), send(2), socket(2), writev(2), loader.conf(5), tuning(7), sysctl(8)

K. Elmeleegy, A. Chanda, A. L. Cox, and W. Zwaenepoel, "A Portable Kernel Abstraction for Low-

Overhead Ephemeral Mapping Management", The Proceedings of the 2005 USENIX Annual Technical

Conference, pp 223-236, 2005.

HISTORY
The sendfile() system call first appeared in FreeBSD 3.0. This manual page first appeared in

FreeBSD 3.1. In FreeBSD 10 support for sending shared memory descriptors had been introduced. In

FreeBSD 11 a non-blocking implementation had been introduced.

AUTHORS
The initial implementation of sendfile() system call and this manual page were written by David G.

Lawrence <dg@dglawrence.com>. The FreeBSD 11 implementation was written by

Gleb Smirnoff <glebius@FreeBSD.org>.

BUGS
The sendfile() system call will not fail, i.e., return -1 and set errno to EFAULT, if provided an invalid

address for sbytes. The sendfile() system call does not support SCTP sockets, it will return -1 and set

errno to EINVAL.

SENDFILE(2) FreeBSD System Calls Manual SENDFILE(2)

FreeBSD 14.2-RELEASE March 30, 2020 FreeBSD 14.2-RELEASE


