
NAME
seqc_consistent, seqc_read, seqc_write_begin, seqc_write_end - lockless read algorithm

SYNOPSIS
#include <sys/seqc.h>

void

seqc_write_begin(seqc_t *seqcp);

void

seqc_write_end(seqc_t *seqcp);

seqc_t

seqc_read(seqc_t *seqcp);

seqc_t

seqc_consistent(const seqc_t *seqcp, seqc_t oldseqc);

DESCRIPTION
The seqc allows zero or more readers and zero or one writer to concurrently access an object, providing

a consistent snapshot of the object for readers. No mutual exclusion between readers and writers is

required, but readers may be starved indefinitely by writers.

The functions seqc_write_begin() and seqc_write_end() are used to create a transaction for writer, and

notify the readers that the object will be modified.

The seqc_read() function returns the current sequence number. If a writer has started a transaction, this

function will spin until the transaction has ended.

The seqc_consistent() function compares the sequence number with a previously fetched value. The

oldseqc variable should contain a sequence number from the beginning of read transaction.

The reader at the end of a transaction checks if the sequence number has changed. If the sequence

number didn’t change the object wasn’t modified, and fetched variables are valid. If the sequence

number changed the object was modified and the fetch should be repeated. In case when sequence

number is odd the object change is in progress and the reader will wait until the write will the sequence

number will become even.

EXAMPLES
The following example for a writer changees the var1 and var2 variables in the obj structure:

SEQC(9) FreeBSD Kernel Developer’s Manual SEQC(9)

FreeBSD 14.0-RELEASE-p6 July 29, 2019 FreeBSD 14.0-RELEASE-p6



lock_exclusive(&obj->lock);

seqc_write_begin(&obj->seqc);

obj->var1 = 1;

obj->var2 = 2;

seqc_write_end(&obj->seqc);

unlock_exclusive(&obj->lock);

The following example for a reader reads the var1 and var2 variables from the obj structure. In the case

where the sequence number was changed it restarts the whole process.

int var1, var2;

seqc_t seqc;

for (;;) {

seqc = seqc_read(&obj->seqc);

var1 = obj->var1;

var2 = obj->var2;

if (seqc_consistent(&obj->seqc, seqc))

break;

}

AUTHORS
The seqc functions was implemented by Mateusz Guzik <mjg@FreeBSD.org>. This manual page was

written by

Mariusz Zaborski <oshogbo@FreeBSD.org>.

CAVEATS
There is no guarantee of progress for readers. In case when there are a lot of writers the reader can be

starved. This concern may be solved by returning error after a few attempts.

Theoretically if reading takes a very long time, and when there are many writers the counter may

overflow and wrap around to the same value. In that case the reader will not notice that the object was

changed. Given that this needs 4 billion transactional writes across a single contended reader, it is

unlikely to ever happen. This could be avoided by extending the interface to allow 64-bit counters.

SEQC(9) FreeBSD Kernel Developer’s Manual SEQC(9)

FreeBSD 14.0-RELEASE-p6 July 29, 2019 FreeBSD 14.0-RELEASE-p6


