
NAME
getrlimit, setrlimit - control maximum system resource consumption

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>

int

getrlimit(int resource, struct rlimit *rlp);

int

setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it creates may be

obtained with the getrlimit() system call, and set with the setrlimit() system call.

The resource argument is one of the following:

RLIMIT_AS The maximum amount (in bytes) of virtual memory the process is allowed to map.

RLIMIT_CORE The largest size (in bytes) core(5) file that may be created.

RLIMIT_CPU The maximum amount of cpu time (in seconds) to be used by each process.

RLIMIT_DATA The maximum size (in bytes) of the data segment for a process; this defines how

far a program may extend its break with the sbrk(2) function.

RLIMIT_FSIZE The largest size (in bytes) file that may be created.

RLIMIT_KQUEUES

The maximum number of kqueues this user id is allowed to create.

RLIMIT_MEMLOCK

The maximum size (in bytes) which a process may lock into memory using the

mlock(2) system call.

GETRLIMIT(2) FreeBSD System Calls Manual GETRLIMIT(2)

FreeBSD 14.0-RELEASE-p11 September 30, 2016 FreeBSD 14.0-RELEASE-p11



RLIMIT_NOFILE The maximum number of open files for this process.

RLIMIT_NPROC The maximum number of simultaneous processes for this user id.

RLIMIT_NPTS The maximum number of pseudo-terminals this user id is allowed to create.

RLIMIT_RSS When there is memory pressure and swap is available, prioritize eviction of a

process’ resident pages beyond this amount (in bytes). When memory is not under

pressure, this rlimit is effectively ignored. Even when there is memory pressure,

the amount of available swap space and some sysctl settings like vm.swap_enabled

and vm.swap_idle_enabled can affect what happens to processes that have

exceeded this size.

Processes that exceed their set RLIMIT_RSS are not signalled or halted. The limit

is merely a hint to the VM daemon to prefer to deactivate pages from processes

that have exceeded their set RLIMIT_RSS.

RLIMIT_SBSIZE The maximum size (in bytes) of socket buffer usage for this user. This limits the

amount of network memory, and hence the amount of mbufs, that this user may

hold at any time.

RLIMIT_STACK The maximum size (in bytes) of the stack segment for a process; this defines how

far a program’s stack segment may be extended. Stack extension is performed

automatically by the system.

RLIMIT_SWAP The maximum size (in bytes) of the swap space that may be reserved or used by all

of this user id’s processes. This limit is enforced only if bit 1 of the

vm.overcommit sysctl is set. Please see tuning(7) for a complete description of this

sysctl.

RLIMIT_VMEM An alias for RLIMIT_AS.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded, a process

might or might not receive a signal. For example, signals are generated when the cpu time or file size is

exceeded, but not if the address space or RSS limit is exceeded. A program that exceeds the soft limit is

allowed to continue execution until it reaches the hard limit, or modifies its own resource limit. Even

reaching the hard limit does not necessarily halt a process. For example, if the RSS hard limit is

exceeded, nothing happens.

The rlimit structure is used to specify the hard and soft limits on a resource.

GETRLIMIT(2) FreeBSD System Calls Manual GETRLIMIT(2)

FreeBSD 14.0-RELEASE-p11 September 30, 2016 FreeBSD 14.0-RELEASE-p11



struct rlimit {

rlim_t rlim_cur; /* current (soft) limit */

rlim_t rlim_max; /* maximum value for rlim_cur */

};

Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within the

range from 0 to rlim_max or (irreversibly) lower rlim_max.

An "infinite" value for a limit is defined as RLIM_INFINITY.

Because this information is stored in the per-process information, this system call must be executed

directly by the shell if it is to affect all future processes created by the shell; limit is thus a built-in

command to csh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal

way: a brk(2) function fails if the data space limit is reached. When the stack limit is reached, the

process receives a segmentation fault (SIGSEGV); if this signal is not caught by a handler using the

signal stack, this signal will kill the process.

A file I/O operation that would create a file larger that the process’ soft limit will cause the write to fail

and a signal SIGXFSZ to be generated; this normally terminates the process, but may be caught. When

the soft cpu time limit is exceeded, a SIGXCPU signal is sent to the offending process.

When most operations would allocate more virtual memory than allowed by the soft limit of

RLIMIT_AS, the operation fails with ENOMEM and no signal is raised. A notable exception is stack

extension, described above. If stack extension would allocate more virtual memory than allowed by the

soft limit of RLIMIT_AS, a SIGSEGV signal will be delivered. The caller is free to raise the soft

address space limit up to the hard limit and retry the allocation.

RETURN VALUES
Upon successful completion, the value 0 is returned; otherwise the value -1 is returned and the global

variable errno is set to indicate the error.

ERRORS
The getrlimit() and setrlimit() system calls will fail if:

[EFAULT] The address specified for rlp is invalid.

[EPERM] The limit specified to setrlimit() would have raised the maximum limit value, and

the caller is not the super-user.

GETRLIMIT(2) FreeBSD System Calls Manual GETRLIMIT(2)

FreeBSD 14.0-RELEASE-p11 September 30, 2016 FreeBSD 14.0-RELEASE-p11



SEE ALSO
csh(1), quota(1), quotactl(2), sigaction(2), sigaltstack(2), sysctl(3), ulimit(3)

HISTORY
The getrlimit() system call appeared in 4.2BSD.

GETRLIMIT(2) FreeBSD System Calls Manual GETRLIMIT(2)

FreeBSD 14.0-RELEASE-p11 September 30, 2016 FreeBSD 14.0-RELEASE-p11


