
NAME
sglist, sglist_alloc, sglist_append, sglist_append_bio, sglist_append_mbuf, sglist_append_mbuf_epg,

sglist_append_phys, sglist_append_sglist, sglist_append_single_mbuf, sglist_append_uio,

sglist_append_user, sglist_append_vmpages, sglist_build, sglist_clone, sglist_consume_uio,

sglist_count, sglist_count_mbuf_epg, sglist_count_vmpages, sglist_free, sglist_hold, sglist_init,
sglist_join, sglist_length, sglist_reset, sglist_slice, sglist_split - manage a scatter/gather list of physical

memory addresses

SYNOPSIS
#include <sys/types.h>
#include <sys/sglist.h>

struct sglist *

sglist_alloc(int nsegs, int mflags);

int

sglist_append(struct sglist *sg, void *buf, size_t len);

int

sglist_append_bio(struct sglist *sg, struct bio *bp);

int

sglist_append_mbuf_epg(struct sglist *sg, struct mbuf *m, size_t offset, size_t len);

int

sglist_append_mbuf(struct sglist *sg, struct mbuf *m);

int

sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len);

int

sglist_append_sglist(struct sglist *sg, struct sglist *source, size_t offset, size_t len);

int

sglist_append_single_mbuf(struct sglist *sg, struct mbuf *m);

int

sglist_append_uio(struct sglist *sg, struct uio *uio);

int

SGLIST(9) FreeBSD Kernel Developer’s Manual SGLIST(9)

FreeBSD 14.0-RELEASE-p6 May 25, 2021 FreeBSD 14.0-RELEASE-p6

sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td);

int

sglist_append_vmpages(struct sglist *sg, vm_page_t *m, size_t pgoff, size_t len);

struct sglist *

sglist_build(void *buf, size_t len, int mflags);

struct sglist *

sglist_clone(struct sglist *sg, int mflags);

int

sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid);

int

sglist_count(void *buf, size_t len);

int

sglist_count_mbuf_epg(struct mbuf *m, size_t offset, size_t len);

int

sglist_count_vmpages(vm_page_t *m, size_t pgoff, size_t len);

void

sglist_free(struct sglist *sg);

struct sglist *

sglist_hold(struct sglist *sg);

void

sglist_init(struct sglist *sg, int maxsegs, struct sglist_seg *segs);

int

sglist_join(struct sglist *first, struct sglist *second);

size_t

sglist_length(struct sglist *sg);

void

sglist_reset(struct sglist *sg);

SGLIST(9) FreeBSD Kernel Developer’s Manual SGLIST(9)

FreeBSD 14.0-RELEASE-p6 May 25, 2021 FreeBSD 14.0-RELEASE-p6

int

sglist_slice(struct sglist *original, struct sglist **slice, size_t offset, size_t length, int mflags);

int

sglist_split(struct sglist *original, struct sglist **head, size_t length, int mflags);

DESCRIPTION
The sglist API manages physical address ranges. Each list contains one or more elements. Each

element contains a starting physical address and a length. Scatter/gather lists are read-only while they

are shared. If one wishes to alter an existing scatter/gather list and does not hold the sole reference to

the list, then one should create a new list instead of modifying the existing list.

Each scatter/gather list object contains a reference count. New lists are created with a single reference.

New references are obtained by calling sglist_hold and are released by calling sglist_free.

Allocating and Initializing Lists
Each sglist object consists of a header structure and a variable-length array of scatter/gather list

elements. The sglist_alloc function allocates a new list that contains a header and nsegs scatter/gather

list elements. The mflags argument can be set to either M_NOWAIT or M_WAITOK.

The sglist_count function returns the number of scatter/gather list elements needed to describe the

physical address ranges mapped by a single kernel virtual address range. The kernel virtual address

range starts at buf and is len bytes long.

The sglist_count_mbuf_epg function returns the number of scatter/gather list elements needed to

describe the external multipage mbuf buffer m. The ranges start at an offset of offset relative to the start

of the buffer and is len bytes long.

The sglist_count_vmpages function returns the number of scatter/gather list elements needed to describe

the physical address ranges of a buffer backed by an array of virtual memory pages m. The buffer starts

at an offset of pgoff bytes relative to the first page and is len bytes long.

The sglist_build function allocates a new scatter/gather list object that describes the physical address

ranges mapped by a single kernel virtual address range. The kernel virtual address range starts at buf

and is len bytes long. The mflags argument can be set to either M_NOWAIT or M_WAITOK.

The sglist_clone function returns a copy of an existing scatter/gather list object sg. The mflags argument

can be set to either M_NOWAIT or M_WAITOK. This can be used to obtain a private copy of a

scatter/gather list before modifying it.

SGLIST(9) FreeBSD Kernel Developer’s Manual SGLIST(9)

FreeBSD 14.0-RELEASE-p6 May 25, 2021 FreeBSD 14.0-RELEASE-p6

The sglist_init function initializes a scatter/gather list header. The header is pointed to by sg and is

initialized to manage an array of maxsegs scatter/gather list elements pointed to by segs. This can be

used to initialize a scatter/gather list header whose storage is not provided by sglist_alloc. In that case,

the caller should not call sglist_free to release its own reference and is responsible for ensuring all other

references to the list are dropped before it releases the storage for sg and segs.

Constructing Scatter/Gather Lists
The sglist API provides several routines for building a scatter/gather list to describe one or more objects.

Specifically, the sglist_append family of routines can be used to append the physical address ranges

described by an object to the end of a scatter/gather list. All of these routines return 0 on success or an

error on failure. If a request to append an address range to a scatter/gather list fails, the scatter/gather list

will remain unchanged.

The sglist_append function appends the physical address ranges described by a single kernel virtual

address range to the scatter/gather list sg. The kernel virtual address range starts at buf and is len bytes

long.

The sglist_append_bio function appends the physical address ranges described by a single bio bp to the

scatter/gather list sg.

The sglist_append_mbuf_epg function appends the physical address ranges described by the external

multipage mbuf(9) buffer ext_pgs to the scatter/gather list sg. The physical address ranges start at offset

offset within ext_pgs and continue for len bytes. Note that unlike sglist_append_mbuf,
sglist_append_mbuf_epg only adds ranges for a single mbuf, not an entire mbuf chain.

The sglist_append_mbuf function appends the physical address ranges described by an entire mbuf chain

m to the scatter/gather list sg.

The sglist_append_mbuf function appends the physical address ranges described by a single mbuf m to

the scatter/gather list sg.

The sglist_append_phys function appends a single physical address range to the scatter/gather list sg.

The physical address range starts at paddr and is len bytes long.

The sglist_append_sglist function appends physical address ranges described by the scatter/gather list

source to the scatter/gather list sg. The physical address ranges start at offset offset within source and

continue for len bytes.

The sglist_append_uio function appends the physical address ranges described by a uio(9) object to the

scatter/gather list sg. Note that it is the caller’s responsibility to ensure that the pages backing the I/O

SGLIST(9) FreeBSD Kernel Developer’s Manual SGLIST(9)

FreeBSD 14.0-RELEASE-p6 May 25, 2021 FreeBSD 14.0-RELEASE-p6

request are wired for the lifetime of sg. Note also that this routine does not modify uio.

The sglist_append_user function appends the physical address ranges described by a single user virtual

address range to the scatter/gather list sg. The user virtual address range is relative to the address space

of the thread td. It starts at buf and is len bytes long. Note that it is the caller’s responsibility to ensure

that the pages backing the user buffer are wired for the lifetime of sg.

The sglist_append_vmpages function appends the physical address ranges of a buffer backed by an array

of virtual memory pages m. The buffer starts at an offset of pgoff bytes relative to the first page and is

len bytes long.

The sglist_consume_uio function is a variation of sglist_append_uio. As with sglist_append_uio, it

appends the physical address ranges described by uio to the scatter/gather list sg. Unlike

sglist_append_uio, however, sglist_consume_uio modifies the I/O request to indicate that the appended

address ranges have been processed similar to calling uiomove(9). This routine will only append ranges

that describe up to resid total bytes in length. If the available segments in the scatter/gather list are

exhausted before resid bytes are processed, then the uio structure will be updated to reflect the actual

number of bytes processed, and sglist_consume_io will return zero to indicate success. In effect, this

function will perform partial reads or writes. The caller can compare the uio_resid member of uio

before and after calling sglist_consume_uio to determine the actual number of bytes processed.

Manipulating Scatter/Gather Lists
The sglist_join function appends physical address ranges from the scatter/gather list second onto first

and then resets second to an empty list. It returns zero on success or an error on failure.

The sglist_split function splits an existing scatter/gather list into two lists. The first length bytes

described by the list original are moved to a new list *head. If original describes a total address range

that is smaller than length bytes, then all of the address ranges will be moved to the new list at *head and

original will be an empty list. The caller may supply an existing scatter/gather list in *head. If so, the

list must be empty. Otherwise, the caller may set *head to NULL in which case a new scatter/gather list

will be allocated. In that case, mflags may be set to either M_NOWAIT or M_WAITOK. Note that

since the original list is modified by this call, it must be a private list with no other references. The

sglist_split function returns zero on success or an error on failure.

The sglist_slice function generates a new scatter/gather list from a sub-range of an existing scatter/gather

list original. The sub-range to extract is specified by the offset and length parameters. The new

scatter/gather list is stored in *slice. As with head for sglist_join, the caller may either provide an empty

scatter/gather list, or it may set *slice to NULL in which case sglist_slice will allocate a new list subject

to mflags. Unlike sglist_split, sglist_slice does not modify original and does not require it to be a private

list. The sglist_split function returns zero on success or an error on failure.

SGLIST(9) FreeBSD Kernel Developer’s Manual SGLIST(9)

FreeBSD 14.0-RELEASE-p6 May 25, 2021 FreeBSD 14.0-RELEASE-p6

Miscellaneous Routines
The sglist_reset function clears the scatter/gather list sg so that it no longer maps any address ranges.

This can allow reuse of a single scatter/gather list object for multiple requests.

The sglist_length function returns the total length of the physical address ranges described by the

scatter/gather list sg.

RETURN VALUES
The sglist_alloc, sglist_build, and sglist_clone functions return a new scatter/gather list on success or

NULL on failure.

The sglist_append family of functions and the sglist_consume_uio, sglist_join, sglist_slice, and

sglist_split functions return zero on success or an error on failure.

The sglist_count family of functions return a count of scatter/gather list elements.

The sglist_length function returns a count of address space described by a scatter/gather list in bytes.

ERRORS
The sglist_append functions return the following errors on failure:

[EINVAL] The scatter/gather list has zero segments.

[EFBIG] There are not enough available segments in the scatter/gather list to append the

specified physical address ranges.

The sglist_consume_uio function returns the following error on failure:

[EINVAL] The scatter/gather list has zero segments.

The sglist_join function returns the following error on failure:

[EFBIG] There are not enough available segments in the scatter/gather list first to append

the physical address ranges from second.

The sglist_slice function returns the following errors on failure:

[EINVAL] The original scatter/gather list does not describe enough address space to cover

the requested sub-range.

SGLIST(9) FreeBSD Kernel Developer’s Manual SGLIST(9)

FreeBSD 14.0-RELEASE-p6 May 25, 2021 FreeBSD 14.0-RELEASE-p6

[EINVAL] The caller-supplied scatter/gather list in *slice is not empty.

[ENOMEM] An attempt to allocate a new scatter/gather list with M_NOWAIT set in mflags

failed.

[EFBIG] There are not enough available segments in the caller-supplied scatter/gather list

in *slice to describe the requested physical address ranges.

The sglist_split function returns the following errors on failure:

[EDOOFUS] The original scatter/gather list has more than one reference.

[EINVAL] The caller-supplied scatter/gather list in *head is not empty.

[ENOMEM] An attempt to allocate a new scatter/gather list with M_NOWAIT set in mflags

failed.

[EFBIG] There are not enough available segments in the caller-supplied scatter/gather list

in *head to describe the requested physical address ranges.

SEE ALSO
g_bio(9), malloc(9), mbuf(9), uio(9)

HISTORY
This API was first introduced in FreeBSD 8.0.

SGLIST(9) FreeBSD Kernel Developer’s Manual SGLIST(9)

FreeBSD 14.0-RELEASE-p6 May 25, 2021 FreeBSD 14.0-RELEASE-p6

