SH(1) FreeBSD General Commands Manual SH(2)

NAME
sh - command interpreter (shell)

SYNOPSIS
sh [-/[+abCEefhlimnPpTuVvx] [-/+0 longname] [script [arg ...]]
sh [-/[+abCEefhlimnPpTuVvx] [-/+0 longname] -c string [name [arg ...]]
sh [-/[+abCEefhlimnPpTuVvx] [-/+0 longname] -s[arg ...]

DESCRIPTION
The sh utility isthe standard command interpreter for the system. The current version of sh iscloseto
the IEEE Std 1003.1 ("POSIX.1") specification for the shell. It only supports features designated by
POSIX, plus afew Berkeley extensions. This man page is not intended to be atutorial nor a complete
specification of the shell.

Overview
The shell isacommand that reads lines from either afile or the terminal, interprets them, and generally
executes other commands. It isthe program that is started when a user logs into the system, although a
user can select adifferent shell with the chsh(1) command. The shell implements alanguage that has
flow control constructs, a macro facility that provides a variety of features in addition to data storage,
along with built-in history and line editing capabilities. It incorporates many featuresto aid interactive
use and has the advantage that the interpretative language is common to both interactive and non-
interactive use (shell scripts). That is, commands can be typed directly to the running shell or can be put
into afile, which can be executed directly by the shell.

I nvocation
If no arguments are present and if the standard input of the shell is connected to aterminal (or if the -i
option is set), the shell is considered an interactive shell. An interactive shell generally prompts before
each command and handles programming and command errors differently (as described below). When
first starting, the shell inspects argument O, and if it begins with adash (*-"), the shell is also considered
alogin shell. Thisisnormally done automatically by the system when the user first logsin. A login
shell first reads commands from the files /etc/profile and then .profile in auser’s home directory, if they
exist. If the environment variable ENV is set on entry to ashell, or is set in the .profile of alogin shell,
the shell then subjects its value to parameter expansion and arithmetic expansion and reads commands
from the named file. Therefore, a user should place commands that are to be executed only at login time
in the .profile file, and commands that are executed for every shell inside the ENV file. The user can set
the ENV variable to somefile by placing the following line in the file .profile in the home directory,
substituting for .shrc the filename desired:

ENV=$HOME!/.shrc; export ENV

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

The first non-option argument specified on the command line will be treated as the name of afile from
which to read commands (a shell script), and the remaining arguments are set as the positional
parameters of the shell ($1, $2, etc.). Otherwise, the shell reads commands from its standard input.

Unlike older versions of sh the ENV script is only sourced on invocation of interactive shells. This
closes awell-known, and sometimes easily exploitable security hole related to poorly thought out ENV
scripts.

Argument List Processing
All of the single |etter options to sh have a corresponding long name, with the exception of -c and -/+o.
These long names are provided next to the single letter options in the descriptions below. The long
name for an option may be specified as an argument to the -/+o option of sh. Once the shell is running,
the long name for an option may be specified as an argument to the -/+o0 option of the set built-in
command (described later in the section called Built-in Commands). Introducing an option with a dash
(‘-") enablesthe option, while using aplus (‘ +') disablesthe option. A "--" or plain ‘- will stop option
processing and will force the remaining words on the command line to be treated as arguments. The
-/+0 and -c options do not have long names. They take arguments and are described after the single
letter options.

-a alexport
Flag variables for export when assignments are made to them.

-b notify
Enable asynchronous notification of background job completion. (UNIMPLEMENTED)

-C noclobber
Do not overwrite existing files with *>’.

-E emacs
Enable the built-in emacs(1) (ports/editors/emacs) command line editor (disablesthe -V option if
it has been set; set automatically when interactive on terminals).

-e errexit
Exit immediately if any untested command failsin non-interactive mode. The exit status of a
command is considered to be explicitly tested if the command is part of the list used to control an
if, elif, while, or until; if the command isthe |eft hand operand of an "&&" or "||" operator; or if
the command is a pipeline preceded by the ! keyword. If ashell function is executed and its exit
status is explicitly tested, all commands of the function are considered to be tested as well.

It is recommended to check for failures explicitly instead of relying on -e because it tendsto

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

behave in unexpected ways, particularly in larger scripts.

-f noglob
Disable pathname expansion.

-h trackall
A do-nothing option for POSIX compliance.

- ignoreeof
Ignore EOF' s from input when in interactive mode.

- interactive
Force the shell to behave interactively.

-m monitor
Turn on job control (set automatically when interactive). A new process group is created for
each pipeline (called ajob). It is possible to suspend jobs or to have them run in the foreground
or in the background. In anon-interactive shell, this option can be set even if no terminal is
available and is useful to place processes in separate process groups.

-N noexec
If not interactive, read commands but do not execute them. Thisis useful for checking the
syntax of shell scripts.

-P physical
Change the default for the cd and pwd commands from -L (logical directory layout) to -P
(physical directory layout).

-p privileged
Turn on privileged mode. This mode is enabled on startup if either the effective user or group ID
isnot equal to the real user or group ID. Turning this mode off sets the effective user and group
IDsto the real user and group IDs. When this mode is enabled for interactive shells, thefile
letc/suid_profile is sourced instead of ~/.profile after /etc/profile is sourced, and the contents of
the ENV variable are ignored.

-sstdin
Read commands from standard input (set automatically if no file arguments are present). This
option has no effect when set after the shell has already started running (i.e., when set with the
set command).

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

-T trapsasync
When waiting for a child, execute traps immediately. If thisoption is not set, traps are executed

after the child exits, as specified in IEEE Std 1003.2 ("POSIX.2"). This nonstandard option is
useful for putting guarding shells around children that block signals. The surrounding shell may
kill the child or it may just return control to the tty and leave the child aone, like this:

sh-T -c "trap ’exit 1’ 2 ; some-blocking-program"

-U nounset
Write a message to standard error when attempting to expand a variable, a positional parameter
or the special parameter ! that is not set, and if the shell is not interactive, exit immediately.

-V vi Enable the built-in vi(1) command line editor (disables-E if it has been set).

-v verbose
The shell writesitsinput to standard error asit isread. Useful for debugging.

-X Xtrace
Write each command (preceded by the value of the PS4 variable subjected to parameter
expansion and arithmetic expansion) to standard error before it is executed. Useful for
debugging.

nolog Another do-nothing option for POSIX compliance. It only has along name.

pipefail
Change the exit status of a pipeline to the last non-zero exit status of any command in the
pipeling, if any. Since an exit due to SIGPIPE counts as a non-zero exit status, this option may
cause non-zero exit status for successful pipelines if acommand such as head(1) in the pipeline
terminates with status O without reading its input completely. This option only has along name.

verify Set O_VERIFY when sourcing files or loading profiles.

The -c option causes the commands to be read from the string operand instead of from the standard
input. Keep in mind that this option only accepts a single string as its argument, hence multi-word
strings must be quoted.

The -/+0 option takes asits only argument the long name of an option to be enabled or disabled. For

example, the following two invocations of sh both enable the built-in emacs(1) (ports/editors/emacs)
command line editor:

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(21)

set -E
Set -0 emacs

If used without an argument, the -o option displays the current option settings in a human-readable
format. If +o isused without an argument, the current option settings are output in aformat suitable for
re-input into the shell.

Lexical Structure
The shell reads input in terms of lines from afile and breaks it up into words at whitespace (blanks and
tabs), and at certain sequences of characters called "operators', which are special to the shell. There are
two types of operators. control operators and redirection operators (their meaning is discussed | ater).
Thefollowingisalist of valid operators:

Control operators:
& && () \n
- & I I

Redirection operators:
< > < >> <>
<& >& <<<- >

The character ‘#' introduces a comment if used at the beginning of aword. The word starting with ‘#
and the rest of the line are ignored.

ASCII NUL characters (character code 0) are not allowed in shell input.

Quoting
Quoting is used to remove the special meaning of certain characters or words to the shell, such as
operators, whitespace, keywords, or alias names.

There are four types of quoting: matched single quotes, dollar-single quotes, matched double quotes, and
backslash.

Single Quotes
Enclosing charactersin single quotes preserves the literal meaning of all the characters (except
single quotes, making it impossible to put single-quotes in a single-quoted string).

Dollar-Single Quotes

Enclosing characters between $ and’ preserves the literal meaning of all characters except
backslashes and single quotes. A backslash introduces a C-style escape sequence:

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1)

\a
\b

\cc

\e
\f
\n
\r
\t
\v

\\

\nnn

\Xnn

\unnnn

FreeBSD General Commands Manual SH(2)

Alert (ring the terminal bell)
Backspace

The control character denoted by ~cin stty(1). If cisabackdash, it must be
doubled.

The ESC character (ASCII 0x1b)

Formfeed

Newline

Carriage return

Horizontal tab

Vertical tab

Literal backdlash

Literal single-quote

Literal double-quote

The byte whose octal value is nnn (oneto three digits)

The byte whose hexadecimal value is nn (one or more digits only the last two of
which are used)

The Unicode code point nnnn (four hexadecimal digits)

\Unnnnnnnn The Unicode code point nnnnnnnn (eight hexadecimal digits)

The sequences for Unicode code points are currently only useful with UTF-8 locales. They
reject code point 0 and UTF-16 surrogates.

If an escape sequence would produce a byte with value O, that byte and the rest of the string until
the matching single-quote are ignored.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

Any other string starting with a backslash isan error.

Double Quotes
Enclosing characters within double quotes preserves the literal meaning of all characters except
dollar sign (‘$'), backquote (‘*"), and backslash (*\'). The backslash inside double quotesis
historically weird. It remainsliteral unlessit precedes the following characters, which it serves
to quote:

$: " \ \n

Backslash
A backslash preserves the literal meaning of the following character, with the exception of the
newline character (‘\n"). A backsash preceding anewlineis treated as a line continuation.

Keywords
Keywords or reserved words are words that have special meaning to the shell and are recognized at the
beginning of aline and after a control operator. The following are keywords:

! { } case do
done elif else esac fi
for if then until while

Aliases
An dliasisaname and corresponding value set using the alias built-in command. Wherever the
command word of a simple command may occur, and after checking for keywordsif a keyword may
occur, the shell checks the word to seeif it matches an alias. If it does, it replacesit in the input stream
withitsvalue. For example, if thereisan aias called "If" with the value "Is-F", then the input
If foobar
would become

Is -F foobar

Aliases are also recognized after an alias whose value ends with a space or tab. For example, if thereis
also an dias called "nohup” with the value "nohup ", then the input

nohup If foobar

would become

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(1)

nohup |s -F foobar

Aliases provide a convenient way for naive users to create shorthands for commands without having to
learn how to create functions with arguments. Using aliases in scriptsis discouraged because the
command that defines them must be executed before the code that uses them is parsed. Thisisfragile
and not portable.

An alias name may be escaped in acommand line, so that it is not replaced by its aias value, by using
guoting characters within or adjacent to the alias name. Thisis most often done by prefixing an aias
name with a backslash to execute a function, built-in, or normal program with the same name. See the
Quoting subsection.

Commands
The shell interprets the words it reads according to alanguage, the specification of which is outside the
scope of this man page (refer to the BNF in the IEEE Std 1003.2 ("POSIX.2") document). Essentialy
though, alineisread and if the first word of the line (or after a control operator) is not a keyword, then
the shell has recognized a simple command. Otherwise, a complex command or some other special
construct may have been recognized.

Simple Commands
If asimple command has been recognized, the shell performs the following actions:

1. Leading words of the form "name=value" are stripped off and assigned to the environment of the
simple command (they do not affect expansions). Redirection operators and their arguments (as
described below) are stripped off and saved for processing.

2. Theremaining words are expanded as described in the section called Word Expansions, and the
first remaining word is considered the command name and the command islocated. The remaining
words are considered the arguments of the command. If no command name resulted, then the
"name=value" variable assignments recognized in 1) affect the current shell.

3. Redirections are performed as described in the next section.

Redirections
Redirections are used to change where a command reads its input or sendsits output. In general,
redirections open, close, or duplicate an existing reference to afile. The overall format used for

redirectionis:

[n] redir-op file

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

Theredir-op is one of the redirection operators mentioned previously. The following gives some
examples of how these operators can be used. Note that stdin and stdout are commonly used
abbreviations for standard input and standard output respectively.

[n]>file redirect stdout (or file descriptor n) to file

[n]>|file same as above, but override the -C option

[n]>>file append stdout (or file descriptor n) to file

[n]<file redirect stdin (or file descriptor n) from file

[n]<>file redirect stdin (or file descriptor n) to and from file
[n1]<&n2 duplicate stdin (or file descriptor n1) from file descriptor n2
[n]<&- close stdin (or file descriptor n)

[n1]>&n2 duplicate stdout (or file descriptor nl) to file descriptor n2
[n]>&- close stdout (or file descriptor n)

The following redirection is often called a "here-document".

[n]<< delimiter
here-doc-text

delimiter

All the text on successive lines up to the delimiter is saved away and made available to the command on
standard input, or file descriptor nif it is specified. If the delimiter as specified on theinitial lineis
guoted, then the here-doc-text is treated literally, otherwise the text is subjected to parameter expansion,
command substitution, and arithmetic expansion (as described in the section on Word Expansions). If
the operator is"<<-" instead of "<<", then leading tabs in the here-doc-text are stripped.

Sear ch and Execution
There are three types of commands: shell functions, built-in commands, and normal programs. The
command is searched for (by name) in that order. The three types of commands are all executed in a
different way.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(21)

When a shell function is executed, all of the shell positional parameters (except $0, which remains
unchanged) are set to the arguments of the shell function. The variables which are explicitly placed in
the environment of the command (by placing assignments to them before the function name) are made
local to the function and are set to the values given. Then the command given in the function definition
is executed. The positional parameters are restored to their original values when the command
completes. Thisall occurswithin the current shell.

Shell built-in commands are executed internally to the shell, without spawning a new process. There are
two kinds of built-in commands: regular and special. Assignments before specia builtins persist after
they finish executing and assignment errors, redirection errors and certain operand errors cause a script
to be aborted. Special builtins cannot be overridden with afunction. Both regular and special builtins
can affect the shell in ways normal programs cannot.

Otherwise, if the command name does not match a function or built-in command, the command is
searched for asanormal program in the file system (as described in the next section). When anormal
program is executed, the shell runs the program, passing the arguments and the environment to the
program. If the program is not a normal executablefile (i.e., if it does not begin with the "magic
number" whose ASCII representation is"#!", resulting in an ENOEXEC return value from execve(2))
but appearsto be atext file, the shell will run anew instance of sh to interpret it.

Note that previous versions of this document and the source code itself misleadingly and sporadically
refer to a shell script without a magic number as a"shell procedure”.

Path Search
When locating a command, the shell first looksto seeif it has a shell function by that name. Then it
looks for a built-in command by that name. If a built-in command is not found, one of two things
happen:

1. Command names containing a slash are simply executed without performing any searches.

2. Theshell searches each entry in the PATH variable in turn for the command. The value of the
PATH variable should be a series of entries separated by colons. Each entry consists of a directory
name. The current directory may be indicated implicitly by an empty directory name, or explicitly
by asingle period.

Command Exit Status
Each command has an exit status that can influence the behavior of other shell commands. The
paradigm is that a command exits with zero for normal or success, and non-zero for failure, error, or a
falseindication. The man page for each command should indicate the various exit codes and what they
mean. Additionally, the built-in commands return exit codes, as does an executed shell function.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(21)

If acommand is terminated by asignal, its exit status is greater than 128. The signal name can be found
by passing the exit status to kill -I.

If there is no command word, the exit status is the exit status of the last command substitution executed,
or zero if the command does not contain any command substitutions.

Complex Commands
Complex commands are combinations of simple commands with control operators or keywords, together
creating alarger complex command. More generally, acommand is one of the following:
simple command
pipeline
list or compound-list
compound command

function definition

Unless otherwise stated, the exit status of a command is that of the last simple command executed by the
command, or zero if no simple command was executed.

Pipelines
A pipelineis a sequence of one or more commands separated by the control operator ‘|'. The standard
output of all but the last command is connected to the standard input of the next command. The
standard output of the last command is inherited from the shell, as usual.
The format for apipelineis:

[!'] commandl [| command?2 ...]

The standard output of commandl is connected to the standard input of command2. The standard input,
standard output, or both of acommand is considered to be assigned by the pipeline before any

redirection specified by redirection operators that are part of the command.

Note that unlike some other shells, sh executes each process in a pipeline with more than one command
in a subshell environment and as a child of the sh process.

If the pipelineis not in the background (discussed later), the shell waits for all commands to complete.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

If the keyword ! does not precede the pipeling, the exit status is the exit status of the last command
specified in the pipeline if the pipefail option is not set or all commands returned zero, or the last non-
zero exit status of any command in the pipeline otherwise. Otherwise, the exit statusisthe logical NOT
of that exit status. That is, if that statusis zero, the exit statusis 1; if that statusis greater than zero, the
exit status is zero.

Because pipeline assignment of standard input or standard output or both takes place before redirection,
it can be modified by redirection. For example:

commandl 2>& 1 | command2
sends both the standard output and standard error of command1 to the standard input of command?2.

A “; or newline terminator causes the preceding AND-OR-list (described below in the section called
Short-Circuit List Operators) to be executed sequentialy; an ‘&’ causes asynchronous execution of the
preceding AND-OR-list.

Background Commands (&)
If acommand is terminated by the control operator ampersand (‘&’), the shell executes the command in
a subshell environment (see Grouping Commands Together below) and asynchronously; the shell does
not wait for the command to finish before executing the next command.

The format for running a command in background is:
commandl & [command2 & ...]

If the shell is not interactive, the standard input of an asynchronous command is set to /dev/null.
The exit statusis zero.

Lists (Generally Speaking)
A list is a sequence of zero or more commands separated by newlines, semicolons, or ampersands, and
optionally terminated by one of these three characters. The commandsin alist are executed in the order
they arewritten. |If command is followed by an ampersand, the shell starts the command and
immediately proceeds onto the next command; otherwise it waits for the command to terminate before
proceeding to the next one.

Short-Circuit List Operators

"&&" and"||" are AND-OR list operators. "&&" executes the first command, and then executes the
second command if the exit status of the first command is zero. "||" issimilar, but executes the second

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

command if the exit status of the first command is nonzero. "&&" and"||" both have the same priority.

Flow-Control Constructs (if, while, for, case)
The syntax of theif command is:
if list
then list
[elif list
then ligf] ...
[elselist]
fi

The exit statusis that of selected then or elselist, or zero if no list was selected.

The syntax of the while command is:
whilelist
do list
done

Thetwo lists are executed repeatedly while the exit status of thefirst list is zero. The until command is
similar, but has the word until in place of while, which causes it to repeat until the exit status of the first
listis zero.

The exit status is that of the last execution of the second list, or zero if it was never executed.

The syntax of the for command is:
for variable[in word ...]
dolist
done

If in and the following words are omitted, in "$@" is used instead. The words are expanded, and then
thelist is executed repeatedly with the variable set to each word in turn. The do and done commands
may be replaced with *{" and ‘}".

The syntax of the break and continue commandsis:
break [num]
continue [num|

The break command terminates the num innermost for or whileloops. The continue command

continues with the next iteration of the innermost loop. These are implemented as special built-in
commands.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

The syntax of the case command is:

casewordin

pattern) list ;;

esac
The pattern can actually be one or more patterns (see Shell Patterns described |ater), separated by ‘|
characters. Tilde expansion, parameter expansion, command substitution, arithmetic expansion and
guote removal are applied to the word. Then, each pattern is expanded in turn using tilde expansion,
parameter expansion, command substitution and arithmetic expansion and the expanded form of the
word is checked against it. If amatch isfound, the corresponding list is executed. If the selected listis
terminated by the control operator ‘;&’ instead of *;;’, execution continues with the next list, continuing
until alist terminated with *;;’ or the end of the case command.

Grouping Commands Together
Commands may be grouped by writing either

(list)
or
{ list; }

The first form executes the commands in a subshell environment. A subshell environment has its own
copy of:

1. Thecurrent working directory as set by cd.
2. Thefile creation mask as set by umask.

3. Resource limits as set by ulimit.

4. Referencesto open files.

5. Trapsasset by trap.

6. Known jobs.

7. Positional parameters and variables.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(1)

8. Shell options.

9. Shell functions.

10. Shell aliases.

These are copied from the parent shell environment, except that trapped (but not ignored) signals are
reset to the default action and known jobs are cleared. Any changes do not affect the parent shell

environment.

A subshell environment may be implemented as a child process or differently. If job control is enabled
in an interactive shell, commands grouped in parentheses can be suspended and continued as a unit.

For compatibility with other shells, two open parentheses in sequence should be separated by
whitespace.

The second form never forks another shell, so it is dightly more efficient. Grouping commands together
thisway allows the user to redirect their output as though they were one program:

{ echo -n"hello"; echo " world"; } > greeting

Functions
The syntax of afunction definitionis

name () command

A function definition is an executable statement; when executed it installs a function named name and
returns an exit status of zero. The command isnormally alist enclosed between‘{’ and ‘}’.

Variables may be declared to be local to afunction by using the local command. This should appear as
the first statement of a function, and the syntax is:

local [variable ...] [-]

The local command isimplemented as a built-in command. The exit statusis zero unless the command
isnot in afunction or avariable nameisinvalid.

When avariable is made local, it inherits the initial value and exported and readonly flags from the

variable with the same name in the surrounding scope, if thereisone. Otherwise, the variableisinitially
unset. The shell uses dynamic scoping, so that if the variable x is made local to function f, which then

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

calls function g, references to the variable x made inside g will refer to the variable x declared insidef,
not to the global variable named x.

The only special parameter that can be madelocal is‘-'. Making ‘-’ local causes any shell options
(including those that only have long names) that are changed via the set command inside the function to
be restored to their original values when the function returns.

The syntax of the return command is
return [exitstatus]

It terminates the current executional scope, returning from the closest nested function or sourced script;
if no function or sourced script is being executed, it exitsthe shell instance. Thereturn command is
implemented as a special built-in command.

Variablesand Parameters
The shell maintains a set of parameters. A parameter denoted by a name (consisting solely of
alphabetics, numerics, and underscores, and starting with an alphabetic or an underscore) is called a
variable. When starting up, the shell turns all environment variables with valid names into shell
variables. New variables can be set using the form

name=value
A parameter can also be denoted by a number or a specia character as explained below.

Assignments are expanded differently from other words: tilde expansion is also performed after the
equals sign and after any colon and usernames are also terminated by colons, and field splitting and
pathname expansion are not performed.

This specia expansion applies not only to assignments that form a simple command by themselves or
precede a command word, but also to words passed to the export, local or readonly built-in commands
that have thisform. For this, the builtin’s name must be literal (not the result of an expansion) and may
optionally be preceded by one or more literal instances of command without options.

Positional Parameters
A positional parameter is a parameter denoted by a number greater than zero. The shell setsthese
initially to the values of its command line arguments that follow the name of the shell script. The set

built-in command can also be used to set or reset them.

Special Parameters

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1)

FreeBSD General Commands Manual SH(2)

Special parameters are parameters denoted by asingle special character or the digit zero. They are
shown in the following list, exactly asthey would appear in input typed by the user or in the source of a
shell script.

$*

5@

$?

9!

Expands to the positional parameters, starting from one. When the expansion occurs within a
double-quoted string it expands to a single field with the value of each parameter separated by the
first character of the IFSvariable, or by aspaceif IFSis unset.

Expands to the positiona parameters, starting from one. When the expansion occurs within
double-quotes, each positional parameter expands as a separate argument. |f there are no positional
parameters, the expansion of @ generates zero arguments, even when @ is double-quoted. What
this basically means, for example, isif $1is"abc" and $2 is"def ghi", then "$@" expands to the
two arguments:

"abc" "def ghi"
Expands to the number of positional parameters.
Expands to the exit status of the most recent pipeline.

(hyphen) Expands to the current option flags (the single-letter option names concatenated into a
string) as specified on invocation, by the set built-in command, or implicitly by the shell.

Expands to the process ID of the invoked shell. A subshell retains the same value of $ asiits parent.

Expands to the process ID of the most recent background command executed from the current
shell. For apipeline, the process ID isthat of the last command in the pipeline. If this parameter is
referenced, the shell will remember the process ID and its exit status until the wait built-in
command reports completion of the process.

(zero) Expands to the name of the shell script if passed on the command line, the name operand if
given (with -c) or otherwise argument O passed to the shell.

Special Variables
The following variables are set by the shell or have special meaning to it:

CDPATH The search path used with the cd built-in.

EDITOR Thefallback editor used with the fc built-in. If not set, the default editor is ed(1).

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(21)

FCEDIT Thedefault editor used with the fc built-in.

HISTFILE File used for persistent history storage. If unset ~/.sh_history will be used. If set but empty
or HISTSIZE is set to 0 the shell will not load and save the history.

HISTSZE The number of previous commands that are accessible.

HOME The user’s home directory, used in tilde expansion and as a default directory for the cd built-
in.

IFS Input Field Separators. Thisisinitialized at startup to <space>, <tab>, and <newline> in
that order. Thisvalue also appliesif IFSisunset, but not if it is set to the empty string. See
the White Space Splitting section for more details.

LINENO The current line number in the script or function.

MAIL The name of amail file, that will be checked for the arrival of new mail. Overridden by
MAILPATH.

MAILPATH
A colon (‘") separated list of file names, for the shell to check for incoming mail. This
variable overrides the MAIL setting. There is amaximum of 10 mailboxes that can be
monitored at once.

OPTIND Theindex of the next argument to be processed by getopts. Thisisinitialized to 1 at startup.

PATH The default search path for executables. See the Path Search section for details.

PPID The parent process ID of the invoked shell. Thisisset at startup unlessthisvariableisin the
environment. A later change of parent process ID is not reflected. A subshell retains the
same value of PPID.

PS1 The primary prompt string, which defaultsto "$ ", unless you are the superuser, in which
caseit defaultsto "#". PSL may include any of the following formatting sequences, which
are replaced by the given information:

\H This system’ s fully-qualified hostname (FQDN).

\h This system’ s hostname.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1)

P2

P+

FreeBSD General Commands Manual SH(1)

\u User name.

\W Thefinal component of the current working directory.

\w The entire path of the current working directory.

\$ Superuser status. "$" for normal users and "#" for superusers.
\\ A literal backslash.

\[Start of a sequence of non-printing characters (used, for example, to embed ANSI
CSl sequences into the prompt).

\] End of a sequence of non-printing characters.

The following specia and non-printing characters are supported within the sequence of non-
printing characters:

\a Emits ASCII BEL (0x07, 007) character.
\e Emits ASCII ESC (0x1b, 033) character.
\r Emits ASCII CR (0x0d, 015) character.
\n Emits CRLF sequence.

The secondary prompt string, which defaultsto "> ". PS2 may include any of the formatting
sequences from PSL.

The prefix for the trace output (if -x is active). The defaultis"+".

Word Expansions
This clause describes the various expansions that are performed on words. Not al expansions are
performed on every word, as explained later.

Tilde expansions, parameter expansions, command substitutions, arithmetic expansions, and quote
removals that occur within asingle word expand to asingle field. Itisonly field splitting or pathname
expansion that can create multiple fields from asingle word. The single exception to thisrule isthe
expansion of the special parameter @ within double-quotes, as was described above.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(1)

The order of word expansion is:

1. Tilde Expansion, Parameter Expansion, Command Substitution, Arithmetic Expansion (these all
occur at the same time).

2. Fidd Splitting is performed on fields generated by step (1) unlessthe IFSvariableis null.
3. Pathname Expansion (unless the -f option isin effect).
4., Quote Removal.

The'$' character is used to introduce parameter expansion, command substitution, or arithmetic
expansion.

Tilde Expansion (substituting a user’s home dir ectory)
A word beginning with an unquoted tilde character (‘~') is subjected to tilde expansion. All the
characters up to adlash (‘/) or the end of the word are treated as a username and are replaced with the
user’s home directory. If the usernameis missing (asin ~/foobar), the tilde is replaced with the value of
the HOME variable (the current user’ s home directory).

Parameter Expansion
The format for parameter expansion is as follows:

${ expression}
where expression consists of all characters until the matching ‘}’. Any ‘}’ escaped by a backslash or
within asingle-quoted or double-quoted string, and characters in embedded arithmetic expansions,
command substitutions, and variable expansions, are not examined in determining the matching ‘}’. If
the variantswith *+', *-", ‘=" or *? occur within a double-quoted string, as an extension there may be
unquoted parts (via double-quotes inside the expansion); ‘}* within such parts are also not examined in
determining the matching ‘}’.
The simplest form for parameter expansion is.

${ parameter}

Thevalue, if any, of parameter is substituted.

The parameter name or symbol can be enclosed in braces, which are optional except for positiona
parameters with more than one digit or when parameter is followed by a character that could be

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

interpreted as part of the name. |f a parameter expansion occurs inside double-quotes:

1. Fidd splitting is not performed on the results of the expansion, with the exception of the special
parameter @.

2. Pathname expansion is not performed on the results of the expansion.
In addition, a parameter expansion can be modified by using one of the following formats.

${ parameter:-word}
Use Default Values. If parameter isunset or null, the expansion of word is substituted;
otherwise, the value of parameter is substituted.

${ parameter :=word}
Assign Default Values. If parameter isunset or null, the expansion of word is assigned to
parameter. Inall cases, the final value of parameter is substituted. Quoting inside word does not
prevent field splitting or pathname expansion. Only variables, not positional parameters or
special parameters, can be assigned in this way.

${ parameter: 2 word]}
Indicate Error if Null or Unset. If parameter isunset or null, the expansion of word (or a
message indicating it is unset if word is omitted) iswritten to standard error and the shell exits
with anonzero exit status. Otherwise, the value of parameter is substituted. An interactive shell
need not exit.

${ parameter:+word}
Use Alternate Value. If parameter is unset or null, null is substituted; otherwise, the expansion

of word is substituted.

In the parameter expansions shown previously, use of the colon in the format resultsin atest for a
parameter that is unset or null; omission of the colon resultsin atest for a parameter that isonly unset.

The word inherits the type of quoting (unquoted, double-quoted or here-document) from the
surroundings, with the exception that a backslash that quotes a closing brace is removed during quote

removal.

${ #parameter}
String Length. The length in characters of the value of parameter.

The following four varieties of parameter expansion provide for substring processing. In each case,

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

pattern matching notation (see Shell Patterns), rather than regular expression notation, is used to
evaluate the patterns. If parameter is one of the special parameters* or @, the result of the expansion is
unspecified. Enclosing the full parameter expansion string in double-quotes does not cause the
following four varieties of pattern characters to be quoted, whereas quoting characters within the braces
has this effect.

${ parameter Yowor d}
Remove Smallest Suffix Pattern. The word is expanded to produce a pattern. The parameter
expansion then results in parameter, with the smallest portion of the suffix matched by the
pattern deleted.

${ parameter %%wor d}
Remove Largest Suffix Pattern. The word is expanded to produce a pattern. The parameter
expansion then resultsin parameter, with the largest portion of the suffix matched by the pattern
deleted.

${ parameter#word}
Remove Smallest Prefix Pattern. The word is expanded to produce a pattern. The parameter
expansion then results in parameter, with the smallest portion of the prefix matched by the
pattern deleted.

${ parameter##word}
Remove Largest Prefix Pattern. The word is expanded to produce a pattern. The parameter
expansion then resultsin parameter, with the largest portion of the prefix matched by the pattern
deleted.

Command Substitution
Command substitution allows the output of a command to be substituted in place of the command name
itself. Command substitution occurs when the command is enclosed as follows:
$(command)
or the backquoted version:
‘command’
The shell expands the command substitution by executing command and replacing the command
substitution with the standard output of the command, removing sequences of one or more newlines at

the end of the substitution. Embedded newlines before the end of the output are not removed; however,
during field splitting, they may be trandated into spaces depending on the value of IFSand the quoting

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(1)

that isin effect. The command is executed in asubshell environment, except that the built-in commands
jobid, jobs, and trap return information about the parent shell environment and times returns information
about the same process if they are the only command in a command substitution.

If acommand substitution of the $(form begins with a subshell, the $(and (must be separated by
whitespace to avoid ambiguity with arithmetic expansion.

Arithmetic Expansion
Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and substituting its
value. The format for arithmetic expansion is as follows:

$((expression))

The expression istreated as if it were in double-quotes, except that a double-quote inside the expression
is not treated specially. The shell expands all tokensin the expression for parameter expansion,
command substitution, arithmetic expansion and quote removal.
The alowed expressions are a subset of C expressions, summarized below.

Vaues All valuesare of typeintmax t.

Constants
Decimal, octa (starting with 0) and hexadecimal (starting with 0x) integer constants.

Variables Shell variables can be read and written and contain integer constants.

Unary operators
I ~+-

Binary operators
%+ -<<>><<=>>===1=& " | && ||

Assignment operators
== -=*= [Y= <<=>>= & == |:

Conditional operator
?:

The result of the expression is substituted in decimal.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

White Space Splitting (Field Splitting)
In certain contexts, after parameter expansion, command substitution, and arithmetic expansion the shell
scans the results of expansions and substitutions that did not occur in double-quotes for field splitting
and multiple fields can resullt.

Charactersin IFSthat are whitespace (<space>, <tab>, and <newline>) are treated differently from other
charactersin IFS.

Whitespace in IFS at the beginning or end of aword is discarded.

Subsequently, afield is delimited by either

1. anon-whitespace character in IFSwith any whitespace in IFSsurrounding it, or

2. oneor more whitespace charactersin IFS.

If aword ends with a non-whitespace character in IFS thereis no empty field after this character.

If no field is delimited, the word is discarded. In particular, if aword consists solely of an unguoted
substitution and the result of the substitution is null, it is removed by field splitting even if IFSis null.

Pathname Expansion (File Name Gener ation)
Unless the -f option is set, file name generation is performed after word splitting is complete. Each
word isviewed as a series of patterns, separated by slashes. The process of expansion replaces the word
with the names of all existing files whose names can be formed by replacing each pattern with a string
that matches the specified pattern. There are two restrictions on this: first, a pattern cannot match a
string containing a slash, and second, a pattern cannot match a string starting with a period unless the
first character of the patternisaperiod. The next section describes the patterns used for Pathname
Expansion, the four varieties of parameter expansion for substring processing and the case command.

Shell Patterns
A pattern consists of normal characters, which match themselves, and meta-characters. The meta-
charactersare‘*’, '?, and ‘['. These characterslose their special meaningsif they are quoted. When
command or variable substitution is performed and the dollar sign or back quotes are not double-quoted,
the value of the variable or the output of the command is scanned for these characters and they are
turned into meta-characters.

An asterisk (‘*”) matches any string of characters. A question mark (*?) matches any single character.

A left bracket (‘[") introduces a character class. The end of the character classisindicated by a“‘]’; if the
‘]" ismissing then the ‘[* matchesa ‘[’ rather than introducing a character class. A character class

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(1)

matches any of the characters between the square brackets. A locale-dependent range of characters may
be specified using aminus sign. A named class of characters (see wctype(3)) may be specified by
surrounding the name with ‘[:” and “:]’. For example, ‘[[:alpha]]’ isashell pattern that matches asingle
letter. The character class may be complemented by making an exclamation point (‘!") the first
character of the character class. A caret (‘') has the same effect but is non-standard.

Toincludea']’ in acharacter class, makeit the first character listed (after the ‘!’ or ‘', if any). To
includea‘-', makeit thefirst or last character listed.

Built-in Commands
This section lists the built-in commands.

A null command that returns a O (true) exit value.

.file The commandsin the specified file are read and executed by the shell. Thereturn command may
be used to return to the . command's caller. If file containsany ‘/* characters, it isused asis.
Otherwise, the shell searches the PATH for thefile. If itisnot found in the PATH, it issought in
the current working directory.

[A built-in equivalent of test(1).

alias [name[=string] ...]
If name=string is specified, the shell defines the alias name with value string. If just nameis
specified, the value of the alias nameis printed. With no arguments, the alias built-in command
prints the names and values of all defined aliases (see unalias). Alias values are written with
appropriate quoting so that they are suitable for re-input to the shell. Also see the Aliases
subsection.

bg[job..]
Continue the specified jobs (or the current job if no jobs are given) in the background.

bind [-aeklrsv] [key [command]]
List or alter key bindings for the line editor. This command is documented in editrc(5).

break [num]
See the Flow-Control Constructs subsection.

builtin cmd [arg ...]

Execute the specified built-in command, cmd. Thisis useful when the user wishes to override a
shell function with the same name as a built-in command.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1)

FreeBSD General Commands Manual SH(2)

cd [-L | -P] [-€] [directory]

cd -

chdir

Switch to the specified directory, to the directory specified in the HOME environment variable if
no directory is specified or to the directory specified in the OLDPWD environment variable if
directoryis-. If directory does not begin with/, ., or .., then the directorieslisted in the
CDPATH variable will be searched for the specified directory. I1f CDPATH is unset, the current
directory is searched. Theformat of CDPATH isthe same asthat of PATH. In an interactive
shell, the cd command will print out the name of the directory that it actually switched to if the
CDPATH mechanism was used or if directory was -.

If the -P option is specified, .. is handled physically and symbolic links are resolved before ..
components are processed. If the -L option is specified, .. ishandled logically. Thisisthe
default.

The -e option causes cd to return exit status 1 if the full pathname of the new directory cannot be
determined reliably or at all. Normally thisis not considered an error, although awarning is
printed.

If changing the directory fails, the exit status is greater than 1. If the directory is changed, the
exit statusisO, or also 1 if -ewas given.

A synonym for the cd built-in command.

command [-p] [utility [argument ...]]

command [-p] -V utility

command [-p] -V utility

The first form of invocation executes the specified utility, ignoring shell functionsin the search.
If utility isaspecial builtin, it is executed asif it were aregular builtin.

If the -p option is specified, the command search is performed using a default value of PATH
that is guaranteed to find all of the standard utilities.

If the -v option is specified, utility is not executed but a description of its interpretation by the
shell isprinted. For ordinary commands the output is the path name; for shell built-in
commands, shell functions and keywaords only the name iswritten. Aliases are printed as "alias
name=value".

The-V option isidentical to -v except for the output. It prints "utility is description” where

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(1)

description is either the path name to utility, a special shell builtin, a shell builtin, a shell
function, ashell keyword or an dias for value.

continue [num|
See the Flow-Control Constructs subsection.

echo [-e|-n] [string ...]
Print a space-separated list of the arguments to the standard output and append a newline
character.

-n Suppress the output of the trailing newline.

-e Process C-style backslash escape sequences. The echo command understands the
following character escapes:

\a Alert (ring the terminal bell)
\b Backspace

\c Suppress the trailing newline (this has the side-effect of truncating thelineif it is
not the last character)

\e The ESC character (ASCII Ox1b)

\f Formfeed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Literal backslash

\Onnn (Zero) The character whose octal value isnnn

If string is not enclosed in quotes then the backslash itself must be escaped with a
backslash to protect it from the shell. For example

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

$ echo -e "a\vb"
a

b

$ echo -ea\\vb
a

b
$ echo-e"a\b"
ab
$ echo -e a\\\b
ab

Only one of the -e and -n options may be specified.

eval string ...
Concatenate all the arguments with spaces. Then re-parse and execute the command.

exec [command [arg ...]]
Unless command is omitted, the shell processis replaced with the specified program (which must
be areal program, not a shell built-in command or function). Any redirections on the exec
command are marked as permanent, so that they are not undone when the exec command
finishes.

exit [exitstatus]
Terminate the shell process. If exitstatusis given it isused as the exit status of the shell.
Otherwise, if the shell is executing an EXIT trap, the exit status of the last command before the
trap is used; if the shell is executing atrap for asignal, the shell exits by resending the signal to
itself. Otherwise, the exit status of the preceding command is used. The exit status should be an
integer between 0 and 255.

export name...

export [-p]
The specified names are exported so that they will appear in the environment of subsequent
commands. The only way to un-export avariableisto unset it. The shell alowsthe value of a
variableto be set at the sametime as it is exported by writing

export name=value

With no arguments the export command lists the names of all exported variables. If the -p option
is specified, the exported variables are printed as "export name=value" lines, suitable for re-input

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(21)

to the shell.
false A null command that returns a non-zero (false) exit value.
fc[-e editor] [first [last]]
fc -l [-nr] [first [last]]
fc -s[old=new] [first]
The fc built-in command lists, or edits and re-executes, commands previously entered to an

interactive shell.

-e editor
Use the editor named by editor to edit the commands. The editor string is a command
name, subject to search viathe PATH variable. The valueinthe FCEDIT variableis
used as a default when -e is not specified. If FCEDIT isnull or unset, the value of the
EDITOR variableis used. If EDITORisnull or unset, ed(1) is used as the editor.

-1 (ell)
List the commands rather than invoking an editor on them. The commands are written in
the sequence indicated by the first and last operands, as affected by -r, with each
command preceded by the command number.

-n Suppress command numbers when listing with -I.

-r Reverse the order of the commands listed (with -1) or edited (with neither -1 nor -s).

-S Re-execute the command without invoking an editor.

last Select the commandsto list or edit. The number of previous commands that can be
accessed are determined by the value of the HISTS ZE variable. The value of first or
last or both are one of the following:

[+]num
A positive number representing a command number; command numbers can be

displayed with the -l option.

-num A negative decimal number representing the command that was executed num of

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

commands previously. For example, -1 isthe immediately previous command.

string A string indicating the most recently entered command that begins with that
string. If the old=new operand is not also specified with -s, the string form of the
first operand cannot contain an embedded equal sign.

The following variables affect the execution of fc:
FCEDIT Name of the editor to use for history editing.

HISTSZE The number of previous commands that are accessible.

fg[job]
Move the specified job or the current job to the foreground.

getopts optstring var
The POSIX getopts command. The getopts command deprecates the older getopt(1) command.
The first argument should be a series of letters, each possibly followed by a colon which
indicates that the option takes an argument. The specified variable is set to the parsed option.
The index of the next argument is placed into the shell variable OPTIND. If an option takes an
argument, it is placed into the shell variable OPTARG. If aninvalid option is encountered, var is
setto‘?. Itreturns afalse value (1) when it encounters the end of the options. A new set of
arguments may be parsed by assigning OPTIND=1.

hash [-rv] [command ...]
The shell maintains a hash table which remembers the locations of commands. With no
arguments whatsoever, the hash command prints out the contents of thistable.

With arguments, the hash command removes each specified command from the hash table
(unless they are functions) and then locates it. With the -v option, hash prints the locations of the
commands asit finds them. The -r option causes the hash command to delete all the entriesin
the hash table except for functions.

jobid [job]
Print the process | Ds of the processes in the specified job. If the job argument is omitted, use the
current job.

jobs[-Ipg] [job ...]

Print information about the specified jobs, or al jobsif no job argument is given. The
information printed includesjob 1D, status and command name.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1)

kill

FreeBSD General Commands Manual SH(2)

If the - option is specified, the PID of each job isaso printed. If the -p option is specified, only
the process | Ds for the process group |eaders are printed, one per line. If the-soptionis
specified, only the PIDs of the job commands are printed, one per line.

A built-in equivalent of kill(1) that additionally supports sending signalsto jobs.

local [variable ...] [-]

See the Functions subsection.

printf A built-in equivalent of printf(1).

pwd [-L |-P]

Print the path of the current directory. The built-in command may differ from the program of the
same name because the built-in command remembers what the current directory is rather than
recomputing it each time. Thismakesit faster. However, if the current directory is renamed, the
built-in version of pwd(1) will continue to print the old name for the directory.

If the -P option is specified, symboalic links are resolved. If the-L option is specified, the shell’s
notion of the current directory is printed (symbolic links are not resolved). Thisisthe default.

read [-p prompt] [-t timeout] [-er] variable...

The prompt is printed if the -p option is specified and the standard input isaterminal. Thena
lineisread from the standard input. Thetrailing newline is deleted from the line and thelineis
split as described in the section on White Space Splitting (Field Splitting) above, and the pieces
are assigned to the variablesin order. If there are more pieces than variables, the remaining
pieces (along with the charactersin IFSthat separated them) are assigned to the last variable. If
there are more variabl es than pieces, the remaining variables are assigned the null string.

Backs ashes are treated specially, unlessthe -r option is specified. If abacksashisfollowed by a
newline, the backslash and the newline will be deleted. If abackslash isfollowed by any other
character, the backslash will be deleted and the following character will be treated as though it
werenot in IFS evenifitis.

If the -t option is specified and the timeout elapses before a complete line of input is supplied, the
read command will return an exit status as if terminated by SIGALRM without assigning any
values. The timeout value may optionally be followed by one of ‘s, ‘m’ or ‘h’ to explicitly
specify seconds, minutes or hours. If noneissupplied, ‘s’ isassumed.

The -e option exists only for backward compatibility with older scripts.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

The exit status is 0 on success, 1 on end of file, between 2 and 128 if an error occurs and greater
than 128 if atrapped signal interruptsread.

readonly [-p] [name...]
Each specified nameis marked as read only, so that it cannot be subsequently modified or unset.
The shell allows the value of avariable to be set at the same time asit is marked read only by
using the following form:

readonly name=value

With no arguments the readonly command lists the names of all read only variables. If the-p
option is specified, the read-only variables are printed as "readonly name=value" lines, suitable
for re-input to the shell.

return [exitstatus]
See the Functions subsection.

set [-/[+abCEeflimnpTuVvx] [-/+0 longname] [-- arg ...]
The set command performs three different functions:

With no arguments, it lists the values of all shell variables.

If options are given, either in short form or using the long "-/+0 longname" form, it sets or clears
the specified options as described in the section called Argument List Processing.

If the"--" option is specified, set will replace the shell’ s positional parameters with the
subsequent arguments. If no arguments follow the "--" option, all the positional parameters will
be cleared, which is equival ent to executing the command "shift $#'. The"--" flag may be
omitted when specifying arguments to be used as positional replacement parameters. Thisis not
recommended, because the first argument may begin with adash (*-') or aplus (‘+'), which the
set command will interpret as a request to enable or disable options.

setvar variable value
Assigns the specified value to the specified variable. The setvar command is intended to be used
in functions that assign values to variables whose names are passed as parameters. In general it
is better to write "variable=value" rather than using setvar.

shift [n]

Shift the positional parameters n times, or once if nisnot specified. A shift setsthe value of $1
to the value of $2, the value of $2 to the value of $3, and so on, decreasing the value of $# by

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

one. For portability, shifting if there are zero positional parameters should be avoided, since the
shell may abort.

test A built-in equivalent of test(1).

times Print the amount of time spent executing the shell process and its children. Thefirst output line
shows the user and system times for the shell processitself, the second one contains the user and
system times for the children.

trap [action] signal ...

trap -1 Cause the shell to parse and execute action when any specified signal isreceived. The signals
are specified by name or number. In addition, the pseudo-signal EXIT may be used to specify an
action that is performed when the shell terminates. The action may be an empty string or a dash
(*-"); the former causes the specified signal to be ignored and the latter causes the default action
to be taken. Omitting the action and using only signal numbersis another way to request the
default action. In asubshell or utility environment, the shell resets trapped (but not ignored)
signalsto the default action. The trap command has no effect on signals that were ignored on
entry to the shell.

Option -l causesthetrap command to display alist of valid signal names.
true A null command that returns a O (true) exit value.

type[name...]
Interpret each name as a command and print the resolution of the command search. Possible
resolutions are: shell keyword, alias, special shell builtin, shell builtin, command, tracked alias
and not found. For aliases the alias expansion is printed; for commands and tracked aliases the
complete pathname of the command is printed.

ulimit [-HSabcdfkImnopstuvw] [limit]
Set or display resource limits (see getrlimit(2)). If limit is specified, the named resource will be
Set; otherwise the current resource value will be displayed.

If -H is specified, the hard limits will be set or displayed. While everybody is alowed to reduce
a hard limit, only the superuser can increaseit. The -S option specifies the soft limits instead.
When displaying limits, only one of -Sor -H can be given. The default isto display the soft
limits, and to set both the hard and the soft limits.

Option -a causes the ulimit command to display al resources. The parameter limit is not

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1)

FreeBSD General Commands Manual SH(1)

acceptable in this mode.

The remaining options specify which resource value isto be displayed or modified. They are
mutually exclusive.

-b shsize
The maximum size of socket buffer usage, in bytes.

-C coredumpsize
The maximal size of core dump files, in 512-byte blocks. Setting coredumpsize to 0

prevents core dump files from being created.

-d datasize
The maximal size of the data segment of a process, in kilobytes.

-f filesize
The maximal size of afile, in 512-byte blocks.

-k kgqueues
The maximal number of kqueues (see kqueue(2)) for thisuser ID.

-I lockedmem
The maximal size of memory that can be locked by a process, in kilobytes.

-m memoryuse
The maximal resident set size of a process, in kilobytes.

-n nofiles
The maximal number of descriptors that could be opened by a process.

-0 umtxp
The maximal number of process-shared locks (see pthread(3)) for this user ID.

-p pseudoterminals
The maximal number of pseudo-terminals for thisuser ID.

-s stacksize
The maximal size of the stack segment, in kilobytes.

-t time

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(21)

The maximal amount of CPU time to be used by each process, in seconds.

-U userproc
The maximal number of simultaneous processes for this user ID.

-v virtualmem
The maximal virtual size of a process, in kilobytes.

-W swapuse
The maximum amount of swap space reserved or used for this user ID, in kilobytes.

umask [-S] [masK]
Set the file creation mask (see umask(2)) to the octal or symbolic (see chmod(1)) value specified
by mask. If the argument is omitted, the current mask valueis printed. If the-Soptionis
specified, the output is symbolic, otherwise the output is octal.

unalias[-a] [name...]
The specified alias names are removed. If -ais specified, al aliases are removed.

unset [-fv] name...
The specified variables or functions are unset and unexported. If the -v option is specified or no
options are given, the name arguments are treated as variable names. |If the -f option is specified,
the name arguments are treated as function names.

wait [job ...]
Wait for each specified job to complete and return the exit status of the last process in the last
specified job. If any job specified is unknown to the shell, it istreated asif it were a known job
that exited with exit status 127. If no operands are given, wait for all jobsto complete and return
an exit status of zero.

Command Line Editing
When sh is being used interactively from aterminal, the current command and the command history (see
fc in Built-in Commands) can be edited using vi-mode command line editing. This mode uses
commands similar to a subset of those described in the vi(1) man page. The command "set -o vi" (or
"set -V") enables vi-mode editing and places sh into vi insert mode. With vi-mode enabled, sh can be
switched between insert mode and command mode by typing <ESC>. Hitting <return> whilein
command mode will passthe line to the shell.

Similarly, the "set -0 emacs’ (or "set -E") command can be used to enable a subset of emacs-style
command line editing features.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(1)

ENVIRONMENT
The following environment variables affect the execution of sh:

ENV Initialization file for interactive shells.

LANG, LC * Locale settings. These are inherited by children of the shell, and is used in alimited
manner by the shell itself.

OLDPWD The previous current directory. Thisisused and updated by cd.

PWD An absolute pathname for the current directory, possibly containing symbolic links.
Thisis used and updated by the shell.

TERM The default terminal setting for the shell. Thisisinherited by children of the shell,
and isused in the history editing modes.

Additionally, environment variables are turned into shell variables at startup, which may affect the shell
as described under Special Variables.

FILES
~/.profile User'slogin profile.
/etc/profile System login profile.
letc/shells Shell database.

/etc/suid_profile Privileged shell profile.

EXIT STATUS
If the script cannot be found, the exit status will be 127; if it cannot be opened for another reason, the
exit status will be 126. Other errors that are detected by the shell, such as a syntax error, will cause the
shell to exit with anon-zero exit status. If the shell isnot an interactive shell, the execution of the shell
filewill be aborted. Otherwise the shell will return the exit status of the last command executed, or if
the exit builtin is used with a numeric argument, it will return the argument.

SEE ALSO
builtin(1), chsh(1), echo(1), ed(1), emacs(1) (portg/editors/emacs), kill(1), printf(1), pwd(1), test(1),
vi(1), execve(2), getrlimit(2), umask(2), wetype(3), editrc(5), shells(5)

HISTORY
A sh command, the Thompson shell, appeared in Version 1 AT& T UNIX. It was superseded in
Version 7 AT&T UNIX by the Bourne shell, which inherited the name sh.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

SH(1) FreeBSD General Commands Manual SH(2)

This version of sh was rewritten in 1989 under the BSD license after the Bourne shell from AT& T
System V Release 4 UNIX.

AUTHORS
Thisversion of sh was originally written by Kenneth Almquist.

BUGS

The sh utility does not recognize multibyte characters other than UTF-8. Splitting using IFS does not
recognize multibyte characters.

FreeBSD 14.0-RELEASE-p11 December 14, 2022 FreeBSD 14.0-RELEASE-p11

