
NAME
kern_yield, maybe_yield, should_yield - functions for yielding execution of the current thread

SYNOPSIS
void

kern_yield(int prio);

void

maybe_yield();

bool

should_yield();

DESCRIPTION
The kern_yield() function causes the currently running thread to voluntarily, but unconditionally,

surrender its execution to the scheduler. The prio argument specifies the scheduling priority to be

assigned before the context switch, which has an influence on when execution will resume. Note that

the requested priority will take effect until the thread returns to usermode, after which its base user

priority will be restored. Valid values for prio are any of the PRI_* values defined in <sys/priority.h>,

as well as the following special values:

PRI_USER Schedule the thread with its base user priority; the value corresponding to

setpriority(2) / nice(3).

PRI_UNCHANGED Yield the thread without changing its priority.

The should_yield() function checks if sufficient time has passed since the thread’s last voluntary context

switch that yielding would be a useful service to other threads. It returns true when this is the case. See

USAGE NOTES for an elaboration of what this means.

The maybe_yield() function is a helper function for the common task of optionally yielding the

processor. Internally, kern_yield(PRI_USER) will be called if should_yield() returns true.

USAGE NOTES
Although the kernel supports preemption, this is usually reserved for high-priority realtime or interrupt

threads. Kernel worker threads and timesharing threads are not guaranteed to preempt each another.

Thus, threads executing in the kernel are expected to behave cooperatively with respect to other threads

in the system. The yield functions are mostly intended to be used by threads which perform a lot of

work inside the kernel. For example: maybe_yield() is called by the vlnru process each time it reclaims

a vnode.

KERN_YIELD(9) FreeBSD Kernel Developer’s Manual KERN_YIELD(9)

FreeBSD 14.0-RELEASE-p11 January 30, 2023 FreeBSD 14.0-RELEASE-p11



The scheduler aims to identify threads which monopolize the CPU, and will schedule them with

decreased priority. Threads which regularly yield the processor will be given the chance to run more

often. The possibly surprising effect of this is that, depending on the disposition of other threads on the

CPU’s runqueue, a call to kern_yield() does not guarantee that the yielding thread will be taken off the

CPU.

With the above considerations in mind, it is advised that code written using kern_yield() be measured to

confirm that its use has a positive effect on relevant performance or responsiveness metrics. Switching

thread contexts has a non-zero cost, and thus yielding the processor too eagerly could have a negative

impact on performance.

Additionally, since yielding is a cooperative action, it is advised that the yielding thread release any

locks that it may be holding, when possible. Otherwise, threads which have been given the chance to

run could end up waiting on the yielding thread to release the lock, largely defeating the purpose of the

yield.

SEE ALSO
setpriority(2), nice(3), mi_switch(9)

AUTHORS
This manual page was written by Mitchell Horne <mhorne@FreeBSD.org>.

KERN_YIELD(9) FreeBSD Kernel Developer’s Manual KERN_YIELD(9)

FreeBSD 14.0-RELEASE-p11 January 30, 2023 FreeBSD 14.0-RELEASE-p11


