
NAME
SIFTR - Statistical Information For TCP Research

SYNOPSIS
To load the driver as a module at run-time, run the following command as root:

kldload siftr

Alternatively, to load the driver as a module at boot time, add the following line into the loader.conf(5)

file:

siftr_load="YES"

DESCRIPTION
The SIFTR (Statistical Information For TCP Research) kernel module logs a range of statistics on active

TCP connections to a log file. It provides the ability to make highly granular measurements of TCP

connection state, aimed at system administrators, developers and researchers.

Compile-time Configuration
The default operation of SIFTR is to capture IPv4 TCP/IP packets. SIFTR can be configured to support

IPv4 and IPv6 by uncommenting:

CFLAGS+=-DSIFTR_IPV6

in <sys/modules/siftr/Makefile> and recompiling.

In the IPv4-only (default) mode, standard dotted decimal notation (e.g. "136.186.229.95") is used to

format IPv4 addresses for logging. In IPv6 mode, standard dotted decimal notation is used to format

IPv4 addresses, and standard colon-separated hex notation (see RFC 4291) is used to format IPv6

addresses (e.g. "fd00::2") for logging.

Run-time Configuration
SIFTR utilises the sysctl(8) interface to export its configuration variables to user-space. The following

variables are available:

net.inet.siftr.enabled

controls whether the module performs its measurements or not. By default, the

value is set to 0, which means the module will not be taking any measurements.

Having the module loaded with net.inet.siftr.enabled set to 0 will have no impact

on the performance of the network stack, as the packet filtering hooks are only

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

inserted when net.inet.siftr.enabled is set to 1.

net.inet.siftr.ppl

controls how many inbound/outbound packets for a given TCP connection will

cause a log message to be generated for the connection. By default, the value is

set to 1, which means the module will log a message for every packet of every

TCP connection. The value can be set to any integer in the range [1,2^32], and

can be changed at any time, even while the module is enabled.

net.inet.siftr.logfile

controls the path to the file that the module writes its log messages to. By default,

the file /var/log/siftr.log is used. The path can be changed at any time, even while

the module is enabled.

net.inet.siftr.port_filter

controls on which source or destination port SIFTR should capture. By default,

the value is set to 0, which means all ports are eligible for logging. Set to any

other value, only packets where either the source or destination port is equal to

this number are logged.

Log Format
A typical SIFTR log file will contain 3 different types of log message. All messages are written in plain

ASCII text.

Note: The "\" present in the example log messages in this section indicates a line continuation and is not

part of the actual log message.

The first type of log message is written to the file when the module is enabled and starts collecting data

from the running kernel. The text below shows an example module enable log. The fields are tab

delimited key-value pairs which describe some basic information about the system.

enable_time_secs=1685191807 enable_time_usecs=160752 \

siftrver=1.3.0 sysname=FreeBSD sysver=1400089 ipmode=4

Field descriptions are as follows:

enable_time_secs

time at which the module was enabled, in seconds since the UNIX epoch.

enable_time_usecs

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

time at which the module was enabled, in microseconds since enable_time_secs.

siftrver version of SIFTR.

sysname operating system name.

sysver operating system version.

ipmode IP mode as defined at compile time. An ipmode of "4" means IPv6 is not

supported and IP addresses are logged in regular dotted quad format. An ipmode

of "6" means IPv6 is supported, and IP addresses are logged in dotted quad or hex

format, as described in the "Compile-time Configuration" subsection.

The second type of log message is written to the file when a data log message is generated. The text

below shows an example data log triggered by an IPv4 TCP/IP packet. The data is CSV formatted.

o,1685191814.185109,10.1.1.2,32291,10.1.1.3,5001,1073725440, \

14480,2,65160,65700,7,9,4,1460,1000,1,16778209,230000,33580,0, \

65700,0,0,0,86707916,130

Field descriptions are as follows:

1 Direction of packet that triggered the log message. Either "i" for in, or "o" for out.

2 Time at which the packet that triggered the log message was processed by the

pfil(9) hook function, in seconds and microseconds since the UNIX epoch.

3 The IPv4 or IPv6 address of the local host, in dotted quad (IPv4 packet) or colon-

separated hex (IPv6 packet) notation.

4 The TCP port that the local host is communicating via.

5 The IPv4 or IPv6 address of the foreign host, in dotted quad (IPv4 packet) or

colon-separated hex (IPv6 packet) notation.

6 The TCP port that the foreign host is communicating via.

7 The slow start threshold for the flow, in bytes.

8 The current congestion window for the flow, in bytes.

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

9 The current state of the t_flags2 field for the flow.

10 The current sending window for the flow, in bytes. The post scaled value is

reported.

11 The current receive window for the flow, in bytes. The post scaled value is

always reported.

12 The current window scaling factor for the sending window.

13 The current window scaling factor for the receiving window.

14 The current state of the TCP finite state machine, as defined in

<netinet/tcp_fsm.h>.

15 The maximum segment size for the flow, in bytes.

16 The current smoothed RTT estimate for the flow, in units of microsecond.

17 SACK enabled indicator. 1 if SACK enabled, 0 otherwise.

18 The current state of the TCP flags for the flow. See <netinet/tcp_var.h> for

information about the various flags.

19 The current retransmission timeout length for the flow, in units microsecond.

20 The current size of the socket send buffer in bytes.

21 The current number of bytes in the socket send buffer.

22 The current size of the socket receive buffer in bytes.

23 The current number of bytes in the socket receive buffer.

24 The current number of unacknowledged bytes in-flight. Bytes acknowledged via

SACK are not excluded from this count.

25 The current number of segments in the reassembly queue.

26 Flowid for the connection. A caveat: Zero ’0’ either represents a valid flowid or a

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

default value when it’s not being set. There is no easy way to differentiate

without looking at actual network interface card and drivers being used.

27 Flow type for the connection. Flowtype defines which protocol fields are hashed

to produce the flowid. A complete listing is available in sys/mbuf.h under

M_HASHTYPE_*.

The third type of log message is written to the file when the module is disabled and ceases collecting

data from the running kernel. The text below shows an example module disable log. The fields are tab

delimited key-value pairs which provide statistics about operations since the module was most recently

enabled.

disable_time_secs=1685191816 disable_time_usecs=629397 \

num_inbound_tcp_pkts=10 num_outbound_tcp_pkts=10 \

total_tcp_pkts=20 num_inbound_skipped_pkts_malloc=0 \

num_outbound_skipped_pkts_malloc=0 num_inbound_skipped_pkts_tcpcb=2 \

num_outbound_skipped_pkts_tcpcb=2 num_inbound_skipped_pkts_inpcb=0 \

num_outbound_skipped_pkts_inpcb=0 total_skipped_tcp_pkts=4 \

flow_list=10.1.1.2;32291-10.1.1.3;5001,10.1.1.2;58544-10.1.1.3;5001,

Field descriptions are as follows:

disable_time_secs

Time at which the module was disabled, in seconds since the UNIX epoch.

disable_time_usecs

Time at which the module was disabled, in microseconds since disable_time_secs.

num_inbound_tcp_pkts

Number of TCP packets that traversed up the network stack. This only includes

inbound TCP packets during the periods when SIFTR was enabled.

num_outbound_tcp_pkts

Number of TCP packets that traversed down the network stack. This only

includes outbound TCP packets during the periods when SIFTR was enabled.

total_tcp_pkts The summation of num_inbound_tcp_pkts and num_outbound_tcp_pkts.

num_inbound_skipped_pkts_malloc

Number of inbound packets that were not processed because of failed malloc()

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

calls.

num_outbound_skipped_pkts_malloc

Number of outbound packets that were not processed because of failed malloc()

calls.

num_inbound_skipped_pkts_tcpcb

Number of inbound packets that were not processed because of failure to find the

TCP control block associated with the packet.

num_outbound_skipped_pkts_tcpcb

Number of outbound packets that were not processed because of failure to find the

TCP control block associated with the packet.

num_inbound_skipped_pkts_inpcb

Number of inbound packets that were not processed because of failure to find the

IP control block associated with the packet.

num_outbound_skipped_pkts_inpcb

Number of outbound packets that were not processed because of failure to find the

IP control block associated with the packet.

total_skipped_tcp_pkts

The summation of all skipped packet counters.

flow_list A CSV list of TCP flows that triggered data log messages to be generated since

the module was loaded. Each flow entry in the CSV list is formatted as

"local_ip;local_port-foreign_ip;foreign_port". If there are no entries in the list

(i.e., no data log messages were generated), the value will be blank. If there is at

least one entry in the list, a trailing comma will always be present.

The total number of data log messages found in the log file for a module enable/disable cycle should

equate to total_tcp_pkts - total_skipped_tcp_pkts.

IMPLEMENTATION NOTES
SIFTR hooks into the network stack using the pfil(9) interface. In its current incarnation, it hooks into

the AF_INET/AF_INET6 (IPv4/IPv6) pfil(9) filtering points, which means it sees packets at the IP layer

of the network stack. This means that TCP packets inbound to the stack are intercepted before they have

been processed by the TCP layer. Packets outbound from the stack are intercepted after they have been

processed by the TCP layer.

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

The diagram below illustrates how SIFTR inserts itself into the stack.

Upper Layers

^ |

| |

| |

| v

TCP in TCP out

^ |

|________ _________|

| |

| v

| SIFTR |

^ |

________| |__________

| |

| v

IPv{4/6} in IPv{4/6} out

^ |

| |

| v

Layer 2 in Layer 2 out

Physical Layer

SIFTR uses the alq(9) interface to manage writing data to disk.

At first glance, you might mistakenly think that SIFTR extracts information from individual TCP

packets. This is not the case. SIFTR uses TCP packet events (inbound and outbound) for each TCP

flow originating from the system to trigger a dump of the state of the TCP control block for that flow.

With the PPL set to 1, we are in effect sampling each TCP flow’s control block state as frequently as

flow packets enter/leave the system. For example, setting PPL to 2 halves the sampling rate i.e., every

second flow packet (inbound OR outbound) causes a dump of the control block state.

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

The distinction between interrogating individual packets versus interrogating the control block is

important, because SIFTR does not remove the need for packet capturing tools like tcpdump(1). SIFTR
allows you to correlate and observe the cause-and-affect relationship between what you see on the wire

(captured using a tool like tcpdump(1)) and changes in the TCP control block corresponding to the flow

of interest. It is therefore useful to use SIFTR and a tool like tcpdump(1) to gather the necessary data to

piece together the complete picture. Use of either tool on its own will not be able to provide all of the

necessary data.

As a result of needing to interrogate the TCP control block, certain packets during the lifecycle of a

connection are unable to trigger a SIFTR log message. The initial handshake takes place without the

existence of a control block or the complete initialization of the control block, and the final ACK is

exchanged when the connection is in the TIMEWAIT state.

SIFTR was designed to minimise the delay introduced to packets traversing the network stack. This

design called for a highly optimised and minimal hook function that extracted the minimal details

necessary whilst holding the packet up, and passing these details to another thread for actual processing

and logging.

This multithreaded design does introduce some contention issues when accessing the data structure

shared between the threads of operation. When the hook function tries to place details in the structure, it

must first acquire an exclusive lock. Likewise, when the processing thread tries to read details from the

structure, it must also acquire an exclusive lock to do so. If one thread holds the lock, the other must

wait before it can obtain it. This does introduce some additional bounded delay into the kernel’s packet

processing code path.

In some cases (e.g., low memory, connection termination), TCP packets that enter the SIFTR pfil(9)

hook function will not trigger a log message to be generated. SIFTR refers to this outcome as a "skipped

packet". Note that SIFTR always ensures that packets are allowed to continue through the stack, even if

they could not successfully trigger a data log message. SIFTR will therefore not introduce any packet

loss for TCP/IP packets traversing the network stack.

Important Behaviours
The behaviour of a log file path change whilst the module is enabled is as follows:

1. Attempt to open the new file path for writing. If this fails, the path change will fail and the existing

path will continue to be used.

2. Assuming the new path is valid and opened successfully:

- Flush all pending log messages to the old file path.

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

- Close the old file path.

- Switch the active log file pointer to point at the new file path.

- Commence logging to the new file.

During the time between the flush of pending log messages to the old file and commencing logging to

the new file, new log messages will still be generated and buffered. As soon as the new file path is

ready for writing, the accumulated log messages will be written out to the file.

EXAMPLES
To enable the module’s operations, run the following command as root: sysctl net.inet.siftr.enabled=1

To change the granularity of log messages such that 1 log message is generated for every 10 TCP

packets per connection, run the following command as root: sysctl net.inet.siftr.ppl=10

To change the log file location to /tmp/siftr.log, run the following command as root: sysctl

net.inet.siftr.logfile=/tmp/siftr.log

SEE ALSO
tcpdump(1), tcp(4), sysctl(8), alq(9), pfil(9)

ACKNOWLEDGEMENTS
Development of this software was made possible in part by grants from the Cisco University Research

Program Fund at Community Foundation Silicon Valley, and the FreeBSD Foundation.

HISTORY
SIFTR first appeared in FreeBSD 7.4 and FreeBSD 8.2.

SIFTR was first released in 2007 by Lawrence Stewart and James Healy whilst working on the NewTCP

research project at Swinburne University of Technology’s Centre for Advanced Internet Architectures,

Melbourne, Australia, which was made possible in part by a grant from the Cisco University Research

Program Fund at Community Foundation Silicon Valley. More details are available at:

http://caia.swin.edu.au/urp/newtcp/

Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of the "Enhancing the

FreeBSD TCP Implementation" project 2008-2009. More details are available at:

https://www.freebsdfoundation.org/

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

http://caia.swin.edu.au/freebsd/etcp09/

AUTHORS
SIFTR was written by Lawrence Stewart <lstewart@FreeBSD.org> and James Healy

<jimmy@deefa.com>.

This manual page was written by Lawrence Stewart <lstewart@FreeBSD.org>.

BUGS
Current known limitations and any relevant workarounds are outlined below:

- The internal queue used to pass information between the threads of operation is currently

unbounded. This allows SIFTR to cope with bursty network traffic, but sustained high packet-per-

second traffic can cause exhaustion of kernel memory if the processing thread cannot keep up with

the packet rate.

- If using SIFTR on a machine that is also running other modules utilising the pfil(9) framework e.g.

dummynet(4), ipfw(8), pf(4), the order in which you load the modules is important. You should

kldload the other modules first, as this will ensure TCP packets undergo any necessary

manipulations before SIFTR "sees" and processes them.

- There is a known, harmless lock order reversal warning between the pfil(9) mutex and tcbinfo TCP

lock reported by witness(4) when SIFTR is enabled in a kernel compiled with witness(4) support.

- There is no way to filter which TCP flows you wish to capture data for. Post processing is required

to separate out data belonging to particular flows of interest.

- The module does not detect deletion of the log file path. New log messages will simply be lost if the

log file being used by SIFTR is deleted whilst the module is set to use the file. Switching to a new

log file using the net.inet.siftr.logfile variable will create the new file and allow log messages to

begin being written to disk again. The new log file path must differ from the path to the deleted file.

- The hash table used within the code is sized to hold 65536 flows. This is not a hard limit, because

chaining is used to handle collisions within the hash table structure. However, we suspect (based on

analogies with other hash table performance data) that the hash table look up performance (and

therefore the module’s packet processing performance) will degrade in an exponential manner as the

number of unique flows handled in a module enable/disable cycle approaches and surpasses 65536.

- There is no garbage collection performed on the flow hash table. The only way currently to flush it

is to disable SIFTR.

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

- The PPL variable applies to packets that make it into the processing thread, not total packets

received in the hook function. Packets are skipped before the PPL variable is applied, which means

there may be a slight discrepancy in the triggering of log messages. For example, if PPL was set to

10, and the 8th packet since the last log message is skipped, the 11th packet will actually trigger the

log message to be generated. This is discussed in greater depth in CAIA technical report 070824A.

- At the time of writing, there was no simple way to hook into the TCP layer to intercept packets.

SIFTR’s use of IP layer hook points means all IP traffic will be processed by the SIFTR pfil(9) hook

function, which introduces minor, but nonetheless unnecessary packet delay and processing

overhead on the system for non-TCP packets as well. Hooking in at the IP layer is also not ideal

from the data gathering point of view. Packets traversing up the stack will be intercepted and cause

a log message generation BEFORE they have been processed by the TCP layer, which means we

cannot observe the cause-and-affect relationship between inbound events and the corresponding TCP

control block as precisely as could be. Ideally, SIFTR should intercept packets after they have been

processed by the TCP layer i.e. intercept packets coming up the stack after they have been processed

by tcp_input(), and intercept packets coming down the stack after they have been processed by

tcp_output(). The current code still gives satisfactory granularity though, as inbound events tend to

trigger outbound events, allowing the cause-and-effect to be observed indirectly by capturing the

state on outbound events as well.

- The "inflight bytes" value logged by SIFTR does not take into account bytes that have been

SACK’ed by the receiving host.

SIFTR(4) FreeBSD Kernel Interfaces Manual SIFTR(4)

FreeBSD 14.2-RELEASE May 29, 2023 FreeBSD 14.2-RELEASE

