
NAME
sigaltstack - set and/or get signal stack context

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <signal.h>

typedef struct {

char *ss_sp;

size_t ss_size;

int ss_flags;

} stack_t;

int

sigaltstack(const stack_t * restrict ss, stack_t * restrict oss);

DESCRIPTION
The sigaltstack() system call allows defining an alternate stack on which signals are to be processed for

the current thread. If ss is non-zero, it specifies a pointer to and the size of a signal stack on which to

deliver signals. When a signal’s action indicates its handler should execute on the signal stack (specified

with a sigaction(2) system call), the system checks to see if the thread is currently executing on that

stack. If the thread is not currently executing on the signal stack, the system arranges a switch to the

signal stack for the duration of the signal handler’s execution.

An active stack cannot be modified.

If SS_DISABLE is set in ss_flags, ss_sp and ss_size are ignored and the signal stack will be disabled. A

disabled stack will cause all signals to be taken on the regular user stack. If the stack is later re-enabled

then all signals that were specified to be processed on an alternate stack will resume doing so.

If oss is non-zero, the current signal stack state is returned. The ss_flags field will contain the value

SS_ONSTACK if the thread is currently on a signal stack and SS_DISABLE if the signal stack is

currently disabled.

NOTES
The value SIGSTKSZ is defined to be the number of bytes/chars that would be used to cover the usual

case when allocating an alternate stack area. The following code fragment is typically used to allocate

an alternate stack.

SIGALTSTACK(2) FreeBSD System Calls Manual SIGALTSTACK(2)

FreeBSD 14.2-RELEASE May 6, 2010 FreeBSD 14.2-RELEASE



if ((sigstk.ss_sp = malloc(SIGSTKSZ)) == NULL)

/* error return */

sigstk.ss_size = SIGSTKSZ;

sigstk.ss_flags = 0;

if (sigaltstack(&sigstk, NULL) < 0)

perror("sigaltstack");

An alternative approach is provided for programs with signal handlers that require a specific amount of

stack space other than the default size. The value MINSIGSTKSZ is defined to be the number of

bytes/chars that is required by the operating system to implement the alternate stack feature. In

computing an alternate stack size, programs should add MINSIGSTKSZ to their stack requirements to

allow for the operating system overhead.

Signal stacks are automatically adjusted for the direction of stack growth and alignment requirements.

Signal stacks may or may not be protected by the hardware and are not ‘‘grown’’ automatically as is

done for the normal stack. If the stack overflows and this space is not protected unpredictable results

may occur.

RETURN VALUES
The sigaltstack() function returns the value 0 if successful; otherwise the value -1 is returned and the

global variable errno is set to indicate the error.

ERRORS
The sigaltstack() system call will fail and the signal stack context will remain unchanged if one of the

following occurs.

[EFAULT] Either ss or oss points to memory that is not a valid part of the process address

space.

[EPERM] An attempt was made to modify an active stack.

[EINVAL] The ss_flags field was invalid.

[ENOMEM] Size of alternate stack area is less than or equal to MINSIGSTKSZ.

SEE ALSO
sigaction(2), setjmp(3)

HISTORY
The predecessor to sigaltstack(), the sigstack() system call, appeared in 4.2BSD.

SIGALTSTACK(2) FreeBSD System Calls Manual SIGALTSTACK(2)

FreeBSD 14.2-RELEASE May 6, 2010 FreeBSD 14.2-RELEASE


