
NAME
signal - simplified software signal facilities

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <signal.h>

void

(*signal(int sig, void (*func)(int)))(int);

or in FreeBSD’s equivalent but easier to read typedef’d version:

typedef void (*sig_t) (int);

sig_t

signal(int sig, sig_t func);

DESCRIPTION
This signal() facility is a simplified interface to the more general sigaction(2) facility.

Signals allow the manipulation of a process from outside its domain as well as allowing the process to

manipulate itself or copies of itself (children). There are two general types of signals: those that cause

termination of a process and those that do not. Signals which cause termination of a program might

result from an irrecoverable error or might be the result of a user at a terminal typing the ‘interrupt’

character. Signals are used when a process is stopped because it wishes to access its control terminal

while in the background (see tty(4)). Signals are optionally generated when a process resumes after

being stopped, when the status of child processes changes, or when input is ready at the control terminal.

Most signals result in the termination of the process receiving them if no action is taken; some signals

instead cause the process receiving them to be stopped, or are simply discarded if the process has not

requested otherwise. Except for the SIGKILL and SIGSTOP signals, the signal() function allows for a

signal to be caught, to be ignored, or to generate an interrupt. These signals are defined in the file

<signal.h>:

Num
Name Default Action Description

1 SIGHUP terminate process terminal line hangup

2 SIGINT terminate process interrupt program

3 SIGQUIT create core image quit program

4 SIGILL create core image illegal instruction

SIGNAL(3) FreeBSD Library Functions Manual SIGNAL(3)

FreeBSD 14.0-RELEASE-p6 December 1, 2017 FreeBSD 14.0-RELEASE-p6



5 SIGTRAP create core image trace trap

6 SIGABRT create core image abort program (formerly SIGIOT)

7 SIGEMT create core image emulate instruction executed

8 SIGFPE create core image floating-point exception

9 SIGKILL terminate process kill program

10 SIGBUS create core image bus error

11 SIGSEGV create core image segmentation violation

12 SIGSYS create core image non-existent system call invoked

13 SIGPIPE terminate process write on a pipe with no reader

14 SIGALRM terminate process real-time timer expired

15 SIGTERM terminate process software termination signal

16 SIGURG discard signal urgent condition present on socket

17 SIGSTOP stop process stop (cannot be caught or ignored)

18 SIGTSTP stop process stop signal generated from keyboard

19 SIGCONT discard signal continue after stop

20 SIGCHLD discard signal child status has changed

21 SIGTTIN stop process background read attempted from control terminal

22 SIGTTOU stop process background write attempted to control terminal

23 SIGIO discard signal I/O is possible on a descriptor (see fcntl(2))

24 SIGXCPU terminate process cpu time limit exceeded (see setrlimit(2))

25 SIGXFSZ terminate process file size limit exceeded (see setrlimit(2))

26 SIGVTALRM terminate process virtual time alarm (see setitimer(2))

27 SIGPROF terminate process profiling timer alarm (see setitimer(2))

28 SIGWINCH discard signal Window size change

29 SIGINFO discard signal status request from keyboard

30 SIGUSR1 terminate process User defined signal 1

31 SIGUSR2 terminate process User defined signal 2

32 SIGTHR terminate process thread interrupt

33 SIGLIBRT terminate process real-time library interrupt

The sig argument specifies which signal was received. The func procedure allows a user to choose the

action upon receipt of a signal. To set the default action of the signal to occur as listed above, func

should be SIG_DFL. A SIG_DFL resets the default action. To ignore the signal func should be

SIG_IGN. This will cause subsequent instances of the signal to be ignored and pending instances to be

discarded. If SIG_IGN is not used, further occurrences of the signal are automatically blocked and func

is called.

The handled signal is unblocked when the function returns and the process continues from where it left

off when the signal occurred. Unlike previous signal facilities, the handler func() remains installed after
a signal has been delivered.

SIGNAL(3) FreeBSD Library Functions Manual SIGNAL(3)

FreeBSD 14.0-RELEASE-p6 December 1, 2017 FreeBSD 14.0-RELEASE-p6



For some system calls, if a signal is caught while the call is executing and the call is prematurely

terminated, the call is automatically restarted. Any handler installed with signal(3) will have the

SA_RESTART flag set, meaning that any restartable system call will not return on receipt of a signal.

The affected system calls include read(2), write(2), sendto(2), recvfrom(2), sendmsg(2) and recvmsg(2)

on a communications channel or a low speed device and during a ioctl(2) or wait(2). However, calls that

have already committed are not restarted, but instead return a partial success (for example, a short read

count). These semantics could be changed with siginterrupt(3).

When a process which has installed signal handlers forks, the child process inherits the signals. All

caught signals may be reset to their default action by a call to the execve(2) function; ignored signals

remain ignored.

If a process explicitly specifies SIG_IGN as the action for the signal SIGCHLD, the system will not

create zombie processes when children of the calling process exit. As a consequence, the system will

discard the exit status from the child processes. If the calling process subsequently issues a call to

wait(2) or equivalent, it will block until all of the calling process’s children terminate, and then return a

value of -1 with errno set to ECHILD.

See sigaction(2) for a list of functions that are considered safe for use in signal handlers.

RETURN VALUES
The previous action is returned on a successful call. Otherwise, SIG_ERR is returned and the global

variable errno is set to indicate the error.

ERRORS
The signal() function will fail and no action will take place if one of the following occur:

[EINVAL] The sig argument is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.

SEE ALSO
kill(1), kill(2), ptrace(2), sigaction(2), sigaltstack(2), sigprocmask(2), sigsuspend(2), wait(2),

fpsetmask(3), setjmp(3), siginterrupt(3), tty(4)

HISTORY
The signal() function appeared in Version 4 AT&T UNIX. The current signal facility appeared in

4.0BSD. The option to avoid the creation of child zombies through ignoring SIGCHLD appeared in

FreeBSD 5.0.

SIGNAL(3) FreeBSD Library Functions Manual SIGNAL(3)

FreeBSD 14.0-RELEASE-p6 December 1, 2017 FreeBSD 14.0-RELEASE-p6


