
NAME
sigvec - software signal facilities

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <signal.h>

struct sigvec {

void (*sv_handler)();

int sv_mask;

int sv_flags;

};

int

sigvec(int sig, struct sigvec *vec, struct sigvec *ovec);

DESCRIPTION
This interface is made obsolete by sigaction(2).

The system defines a set of signals that may be delivered to a process. Signal delivery resembles the

occurrence of a hardware interrupt: the signal is blocked from further occurrence, the current process

context is saved, and a new one is built. A process may specify a handler to which a signal is delivered,

or specify that a signal is to be blocked or ignored. A process may also specify that a default action is to

be taken by the system when a signal occurs. Normally, signal handlers execute on the current stack of

the process. This may be changed, on a per-handler basis, so that signals are taken on a special signal

stack.

All signals have the same priority. Signal routines execute with the signal that caused their invocation

blocked, but other signals may yet occur. A global signal mask defines the set of signals currently

blocked from delivery to a process. The signal mask for a process is initialized from that of its parent

(normally 0). It may be changed with a sigblock(2) or sigsetmask(2) call, or when a signal is delivered

to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for the

process. If the signal is not currently blocked by the process then it is delivered to the process. When a

signal is delivered, the current state of the process is saved, a new signal mask is calculated (as described

below), and the signal handler is invoked. The call to the handler is arranged so that if the signal

handling routine returns normally the process will resume execution in the context from before the

signal’s delivery. If the process wishes to resume in a different context, then it must arrange to restore

SIGVEC(2) FreeBSD System Calls Manual SIGVEC(2)

FreeBSD 14.0-RELEASE-p11 April 2, 2022 FreeBSD 14.0-RELEASE-p11



the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the process’

signal handler (or until a sigblock(2) or sigsetmask(2) call is made). This mask is formed by taking the

current signal mask, adding the signal to be delivered, and or’ing in the signal mask associated with the

handler to be invoked.

The sigvec() function assigns a handler for a specific signal. If vec is non-zero, it specifies a handler

routine and mask to be used when delivering the specified signal. Further, if the SV_ONSTACK bit is

set in sv_flags, the system will deliver the signal to the process on a signal stack, specified with

sigaltstack(2). If ovec is non-zero, the previous handling information for the signal is returned to the

user.

The following is a list of all signals with names as in the include file <signal.h>:

NAME Default Action Description

SIGHUP terminate process terminal line hangup

SIGINT terminate process interrupt program

SIGQUIT create core image quit program

SIGILL create core image illegal instruction

SIGTRAP create core image trace trap

SIGABRT create core image abort(3) call (formerly SIGIOT)

SIGEMT create core image emulate instruction executed

SIGFPE create core image floating-point exception

SIGKILL terminate process kill program

SIGBUS create core image bus error

SIGSEGV create core image segmentation violation

SIGSYS create core image non-existent system call invoked

SIGPIPE terminate process write on a pipe with no reader

SIGALRM terminate process real-time timer expired

SIGTERM terminate process software termination signal

SIGURG discard signal urgent condition present on socket

SIGSTOP stop process stop (cannot be caught or ignored)

SIGTSTP stop process stop signal generated from keyboard

SIGCONT discard signal continue after stop

SIGCHLD discard signal child status has changed

SIGTTIN stop process background read attempted from control terminal

SIGTTOU stop process background write attempted to control terminal

SIGIO discard signal I/O is possible on a descriptor (see fcntl(2))

SIGXCPU terminate process cpu time limit exceeded (see setrlimit(2))

SIGVEC(2) FreeBSD System Calls Manual SIGVEC(2)

FreeBSD 14.0-RELEASE-p11 April 2, 2022 FreeBSD 14.0-RELEASE-p11



SIGXFSZ terminate process file size limit exceeded (see setrlimit(2))

SIGVTALRM terminate process virtual time alarm (see setitimer(2))

SIGPROF terminate process profiling timer alarm (see setitimer(2))

SIGWINCH discard signal Window size change

SIGINFO discard signal status request from keyboard

SIGUSR1 terminate process User defined signal 1

SIGUSR2 terminate process User defined signal 2

Once a signal handler is installed, it remains installed until another sigvec() call is made, or an execve(2)

is performed. A signal-specific default action may be reset by setting sv_handler to SIG_DFL. The

defaults are process termination, possibly with core dump; no action; stopping the process; or continuing

the process. See the above signal list for each signal’s default action. If sv_handler is SIG_IGN current

and pending instances of the signal are ignored and discarded.

If a signal is caught during the system calls listed below, the call is normally restarted. The call can be

forced to terminate prematurely with an EINTR error return by setting the SV_INTERRUPT bit in

sv_flags. The affected system calls include read(2), write(2), sendto(2), recvfrom(2), sendmsg(2) and

recvmsg(2) on a communications channel or a slow device (such as a terminal, but not a regular file) and

during a wait(2) or ioctl(2). However, calls that have already committed are not restarted, but instead

return a partial success (for example, a short read count).

After a fork(2) or vfork(2) all signals, the signal mask, the signal stack, and the restart/interrupt flags are

inherited by the child.

The execve(2) system call reinstates the default action for all signals which were caught and resets all

signals to be caught on the user stack. Ignored signals remain ignored; the signal mask remains the

same; signals that interrupt system calls continue to do so.

NOTES
The mask specified in vec is not allowed to block SIGKILL or SIGSTOP. This is done silently by the

system.

The SV_INTERRUPT flag is not available in 4.2BSD, hence it should not be used if backward

compatibility is needed.

RETURN VALUES
The sigvec() function returns the value 0 if successful; otherwise the value -1 is returned and the global

variable errno is set to indicate the error.

EXAMPLES

SIGVEC(2) FreeBSD System Calls Manual SIGVEC(2)

FreeBSD 14.0-RELEASE-p11 April 2, 2022 FreeBSD 14.0-RELEASE-p11



On the VAX-11 The handler routine can be declared:

void handler(sig, code, scp)

int sig, code;

struct sigcontext *scp;

Here sig is the signal number, into which the hardware faults and traps are mapped as defined below.

The code argument is either a constant as given below or, for compatibility mode faults, the code

provided by the hardware (Compatibility mode faults are distinguished from the other SIGILL traps by

having PSL_CM set in the psl). The scp argument is a pointer to the sigcontext structure (defined in

<signal.h>), used to restore the context from before the signal.

ERRORS
The sigvec() function will fail and no new signal handler will be installed if one of the following occurs:

[EFAULT] Either vec or ovec points to memory that is not a valid part of the process address

space.

[EINVAL] The sig argument is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.

SEE ALSO
kill(1), kill(2), ptrace(2), sigaction(2), sigaltstack(2), sigblock(2), sigpause(2), sigprocmask(2),

sigsetmask(2), sigsuspend(2), setjmp(3), siginterrupt(3), signal(3), sigsetops(3), tty(4)

HISTORY
A sigvec() system call first appeared in 4.2BSD. It was reimplemented as a wrapper around sigaction(2)

in 4.3BSD-Reno.

BUGS
This manual page is still confusing.

SIGVEC(2) FreeBSD System Calls Manual SIGVEC(2)

FreeBSD 14.0-RELEASE-p11 April 2, 2022 FreeBSD 14.0-RELEASE-p11


