
NAME
init_sleepqueues, sleepq_abort, sleepq_add, sleepq_alloc, sleepq_broadcast, sleepq_free, sleepq_lock,

sleepq_lookup, sleepq_release, sleepq_remove, sleepq_signal, sleepq_set_timeout,
sleepq_set_timeout_sbt, sleepq_sleepcnt, sleepq_timedwait, sleepq_timedwait_sig, sleepq_type,

sleepq_wait, sleepq_wait_sig - manage the queues of sleeping threads

SYNOPSIS
#include <sys/param.h>
#include <sys/sleepqueue.h>

void

init_sleepqueues(void);

int

sleepq_abort(struct thread *td);

void

sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg, int flags, int queue);

struct sleepqueue *

sleepq_alloc(void);

int

sleepq_broadcast(const void *wchan, int flags, int pri, int queue);

void

sleepq_free(struct sleepqueue *sq);

struct sleepqueue *

sleepq_lookup(const void *wchan);

void

sleepq_lock(const void *wchan);

void

sleepq_release(const void *wchan);

void

sleepq_remove(struct thread *td, const void *wchan);

SLEEPQUEUE(9) FreeBSD Kernel Developer’s Manual SLEEPQUEUE(9)

FreeBSD 14.0-RELEASE-p6 June 19, 2019 FreeBSD 14.0-RELEASE-p6



int

sleepq_signal(const void *wchan, int flags, int pri, int queue);

void

sleepq_set_timeout(const void *wchan, int timo);

void

sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr, int flags);

u_int

sleepq_sleepcnt(const void *wchan, int queue);

int

sleepq_timedwait(const void *wchan, int pri);

int

sleepq_timedwait_sig(const void *wchan, int pri);

int

sleepq_type(const void *wchan);

void

sleepq_wait(const void *wchan, int pri);

int

sleepq_wait_sig(const void *wchan, int pri);

DESCRIPTION
Sleep queues provide a mechanism for suspending execution of a thread until some condition is met.

Each queue is associated with a specific wait channel when it is active, and only one queue may be

associated with a wait channel at any given point in time. The implementation of each wait channel

splits its sleepqueue into 2 sub-queues in order to enable some optimizations on threads’ wakeups. An

active queue holds a list of threads that are blocked on the associated wait channel. Threads that are not

blocked on a wait channel have an associated inactive sleep queue. When a thread blocks on a wait

channel it donates its inactive sleep queue to the wait channel. When a thread is resumed, the wait

channel that it was blocked on gives it an inactive sleep queue for later use.

The sleepq_alloc() function allocates an inactive sleep queue and is used to assign a sleep queue to a

thread during thread creation. The sleepq_free() function frees the resources associated with an inactive

sleep queue and is used to free a queue during thread destruction.

SLEEPQUEUE(9) FreeBSD Kernel Developer’s Manual SLEEPQUEUE(9)

FreeBSD 14.0-RELEASE-p6 June 19, 2019 FreeBSD 14.0-RELEASE-p6



Active sleep queues are stored in a hash table hashed on the addresses pointed to by wait channels. Each

bucket in the hash table contains a sleep queue chain. A sleep queue chain contains a spin mutex and a

list of sleep queues that hash to that specific chain. Active sleep queues are protected by their chain’s

spin mutex. The init_sleepqueues() function initializes the hash table of sleep queue chains.

The sleepq_lock() function locks the sleep queue chain associated with wait channel wchan.

The sleepq_lookup() returns a pointer to the currently active sleep queue for that wait channel associated

with wchan or NULL if there is no active sleep queue associated with argument wchan. It requires the

sleep queue chain associated with wchan to have been locked by a prior call to sleepq_lock().

The sleepq_release() function unlocks the sleep queue chain associated with wchan() and is primarily

useful when aborting a pending sleep request before one of the wait functions is called.

The sleepq_add() function places the current thread on the sleep queue associated with the wait channel

wchan. The sleep queue chain associated with argument wchan must be locked by a prior call to

sleepq_lock() when this function is called. If a lock is specified via the lock argument, and if the kernel

was compiled with options INVARIANTS, then the sleep queue code will perform extra checks to

ensure that the lock is used by all threads sleeping on wchan. The wmesg parameter should be a short

description of wchan. The flags parameter is a bitmask consisting of the type of sleep queue being slept

on and zero or more optional flags. The queue parameter specifies the sub-queue, in which the

contending thread will be inserted.

There are currently three types of sleep queues:

SLEEPQ_CONDVAR A sleep queue used to implement condition variables.

SLEEPQ_SLEEP A sleep queue used to implement sleep(9), wakeup(9) and wakeup_one(9).

SLEEPQ_PAUSE A sleep queue used to implement pause(9).

There are currently two optional flag:

SLEEPQ_INTERRUPTIBLE The current thread is entering an interruptible sleep.

SLEEPQ_STOP_ON_BDRY When thread is entering an interruptible sleep, do not stop it upon arrival

of stop action, like SIGSTOP. Wake it up instead.

A timeout on the sleep may be specified by calling sleepq_set_timeout() after sleepq_add(). The wchan

parameter should be the same value from the preceding call to sleepq_add(), and the sleep queue chain

associated with wchan must have been locked by a prior call to sleepq_lock(). The timo parameter

should specify the timeout value in ticks.

SLEEPQUEUE(9) FreeBSD Kernel Developer’s Manual SLEEPQUEUE(9)

FreeBSD 14.0-RELEASE-p6 June 19, 2019 FreeBSD 14.0-RELEASE-p6



sleepq_set_timeout_sbt() function takes sbt argument instead of timo. It allows to specify relative or

absolute wakeup time with higher resolution in form of sbintime_t. The parameter pr allows to specify

wanted absolute event precision. The parameter flags allows to pass additional callout_reset_sbt() flags.

Once the thread is ready to suspend, one of the wait functions is called to put the current thread to sleep

until it is awakened and to context switch to another thread. The sleepq_wait() function is used for non-

interruptible sleeps that do not have a timeout. The sleepq_timedwait() function is used for non-

interruptible sleeps that have had a timeout set via sleepq_set_timeout(). The sleepq_wait_sig() function

is used for interruptible sleeps that do not have a timeout. The sleepq_timedwait_sig() function is used

for interruptible sleeps that do have a timeout set. The wchan argument to all of the wait functions is the

wait channel being slept on. The sleep queue chain associated with argument wchan needs to have been

locked with a prior call to sleepq_lock(). The pri argument is used to set the priority of the thread when

it is awakened. If it is set to zero, the thread’s priority is left alone.

When the thread is resumed, the wait functions return a non-zero value if the thread was awakened due

to an interrupt other than a signal or a timeout. If the sleep timed out, then EWOULDBLOCK is

returned. If the sleep was interrupted by something other than a signal, then some other return value will

be returned.

A sleeping thread is normally resumed by the sleepq_broadcast() and sleepq_signal() functions. The

sleepq_signal() function awakens the highest priority thread sleeping on a wait channel (if

SLEEPQ_UNFAIR flag is set, thread that went to sleep recently) while sleepq_broadcast() awakens all

of the threads sleeping on a wait channel. The wchan argument specifics which wait channel to awaken.

The flags argument must match the sleep queue type contained in the flags argument passed to

sleepq_add() by the threads sleeping on the wait channel. If the pri argument does not equal -1, then

each thread that is awakened will have its priority raised to pri if it has a lower priority. The sleep queue

chain associated with argument wchan must be locked by a prior call to sleepq_lock() before calling any

of these functions. The queue argument specifies the sub-queue, from which threads need to be woken

up.

A thread in an interruptible sleep can be interrupted by another thread via the sleepq_abort() function.

The td argument specifies the thread to interrupt. An individual thread can also be awakened from

sleeping on a specific wait channel via the sleepq_remove() function. The td argument specifies the

thread to awaken and the wchan argument specifies the wait channel to awaken it from. If the thread td

is not blocked on the wait channel wchan then this function will not do anything, even if the thread is

asleep on a different wait channel. This function should only be used if one of the other functions above

is not sufficient. One possible use is waking up a specific thread from a widely shared sleep channel.

The sleepq_sleepcnt() function offer a simple way to retrieve the number of threads sleeping for the

specified queue, given a wchan.

SLEEPQUEUE(9) FreeBSD Kernel Developer’s Manual SLEEPQUEUE(9)

FreeBSD 14.0-RELEASE-p6 June 19, 2019 FreeBSD 14.0-RELEASE-p6



The sleepq_type() function returns the type of wchan associated to a sleepqueue.

The sleepq_abort(), sleepq_broadcast(), and sleepq_signal() functions all return a boolean value. If the

return value is true, then at least one thread was resumed that is currently swapped out. The caller is

responsible for awakening the scheduler process so that the resumed thread will be swapped back in.

This is done by calling the kick_proc0() function after releasing the sleep queue chain lock via a call to

sleepq_release().

The sleep queue interface is currently used to implement the sleep(9) and condvar(9) interfaces. Almost

all other code in the kernel should use one of those interfaces rather than manipulating sleep queues

directly.

SEE ALSO
callout(9), condvar(9), runqueue(9), scheduler(9), sleep(9)

SLEEPQUEUE(9) FreeBSD Kernel Developer’s Manual SLEEPQUEUE(9)

FreeBSD 14.0-RELEASE-p6 June 19, 2019 FreeBSD 14.0-RELEASE-p6


