
NAME
bsnmpagent, snmp_depop_t, snmp_op_t, tree, tree_size, snmp_trace, snmp_debug, snmp_get,
snmp_getnext, snmp_getbulk, snmp_set, snmp_make_errresp, snmp_dep_lookup, snmp_init_context,
snmp_dep_commit, snmp_dep_rollback, snmp_dep_finish - SNMP agent library

LIBRARY
Begemot SNMP library (libbsnmp, -lbsnmp)

SYNOPSIS
#include <asn1.h>
#include <snmp.h>
#include <snmpagent.h>

typedef int

(*snmp_depop_t)(struct snmp_context *ctx, struct snmp_dependency *dep, enum snmp_depop op);

typedef int

(*snmp_op_t)(struct snmp_context *ctx, struct snmp_value *val, u_int len, u_int idx,

enum snmp_op op);

extern struct snmp_node *tree;

extern u_int tree_size;

extern u_int snmp_trace;

extern void (*snmp_debug)(const char *fmt, ...);

enum snmp_ret

snmp_get(struct snmp_pdu *pdu, struct asn_buf *resp_b, struct snmp_pdu *resp, void *data);

enum snmp_ret

snmp_getnext(struct snmp_pdu *pdu, struct asn_buf *resp_b, struct snmp_pdu *resp, void *data);

enum snmp_ret

snmp_getbulk(struct snmp_pdu *pdu, struct asn_buf *resp_b, struct snmp_pdu *resp, void *data);

enum snmp_ret

snmp_set(struct snmp_pdu *pdu, struct asn_buf *resp_b, struct snmp_pdu *resp, void *data);

enum snmp_ret

snmp_make_errresp(const struct snmp_pdu *pdu, struct asn_buf *req_b, struct asn_buf *resp_b);

BSNMPAGENT(3) FreeBSD Library Functions Manual BSNMPAGENT(3)

FreeBSD 14.0-RELEASE-p11 October 4, 2005 FreeBSD 14.0-RELEASE-p11



struct snmp_dependency *

snmp_dep_lookup(struct snmp_context *ctx, const struct asn_oid *base, const struct asn_oid *idx,

size_t alloc, snmp_depop_t func);

struct snmp_context *

snmp_init_context(void);

int

snmp_dep_commit(struct snmp_context *ctx);

int

snmp_dep_rollback(struct snmp_context *ctx);

void

snmp_dep_finish(struct snmp_context *ctx);

DESCRIPTION
The SNMP library contains routines to easily build SNMP agent applications that use SNMP versions 1

or 2. Note, however, that it may be even easier to build an bsnmpd(1) loadable module, that handles the

new MIB (see snmpmod(3)).

Most of the agent routines operate on a global array that the describes the complete MIB served by the

agent. This array is held in the two variables:

extern struct snmp_node *tree;

extern u_int tree_size;

The elements of the array are of type struct snmp_node:

typedef int (*snmp_op_t)(struct snmp_context *, struct snmp_value *,

u_int, u_int, enum snmp_op);

struct snmp_node {

struct asn_oid oid;

const char *name; /* name of the leaf */

enum snmp_node_type type; /* type of this node */

enum snmp_syntax syntax;

snmp_op_t op;

u_int flags;

u_int32_t index; /* index data */

BSNMPAGENT(3) FreeBSD Library Functions Manual BSNMPAGENT(3)

FreeBSD 14.0-RELEASE-p11 October 4, 2005 FreeBSD 14.0-RELEASE-p11



void *data; /* application data */

void *tree_data; /* application data */

};

The fields of this structure are described below.

oid Base OID of the scalar or table column.

name Name of this variable.

type Type of this variable. One of:

enum snmp_node_type {

SNMP_NODE_LEAF = 1,

SNMP_NODE_COLUMN

};

syntax The SNMP syntax of this variable.

op The user supplied handler for this variable. The handler is called with the following arguments:

ctx A pointer to the context (see below). NULL.

val The value to be set or retrieved. For GETNEXT and GETBULK operations the oid in this

value is the current OID. The function (called in this case only for table rows) must find the

lexically next existing OID within the same column and set the oid and value subfields

accordingly. If the table column is exhausted the function must return

SNMP_ERR_NOSUCHNAME. For all other operations the oid in val is the oid to fetch or

set.

len The length of the base oid without index.

idx

For table columns this is the index expression from the node (see below).

op This is the operation to execute, one of:

enum snmp_op {

SNMP_OP_GET = 1,

SNMP_OP_GETNEXT,

BSNMPAGENT(3) FreeBSD Library Functions Manual BSNMPAGENT(3)

FreeBSD 14.0-RELEASE-p11 October 4, 2005 FreeBSD 14.0-RELEASE-p11



SNMP_OP_SET,

SNMP_OP_COMMIT,

SNMP_OP_ROLLBACK,

};

The user handler must return an appropriate SNMP v2 error code. If the original PDU was a

version 1 PDU, the error code is mapped automatically.

flags Currently only the flag SNMP_NODE_CANSET is defined and set for nodes, that can be written

or created.

index This word describes the index for table columns. Each part of the index takes 4 bits starting at

bit 4. Bits 0 to 3 hold the number of index parts. This arrangement allows for tables with up to

seven indexes. Each bit group contains the syntax for the index part. There are a number of

macros to help in parsing this field:

#define SNMP_INDEXES_MAX 7

#define SNMP_INDEX_SHIFT 4

#define SNMP_INDEX_MASK 0xf

#define SNMP_INDEX_COUNT(V) ((V) & SNMP_INDEX_MASK)

#define SNMP_INDEX(V,I) \

(((V) >> (((I) + 1) * SNMP_INDEX_SHIFT)) & \

SNMP_INDEX_MASK)

data This field may contain arbitrary data and is not used by the library.

The easiest way to construct the node table is gensnmptree(1). Note, that one must be careful when

changing the tree while executing a SET operation. Consult the sources for bsnmpd(1).

The global variable snmp_trace together with the function pointed to by snmp_debug help in debugging

the library and the agent. snmp_trace is a bit mask with the following bits:

enum {

SNMP_TRACE_GET,

SNMP_TRACE_GETNEXT,

SNMP_TRACE_SET,

SNMP_TRACE_DEPEND,

SNMP_TRACE_FIND,

};

BSNMPAGENT(3) FreeBSD Library Functions Manual BSNMPAGENT(3)

FreeBSD 14.0-RELEASE-p11 October 4, 2005 FreeBSD 14.0-RELEASE-p11



Setting a bit to true causes the library to call snmp_debug() in strategic places with a debug string. The

library contains a default implementation for the debug function that prints a message to standard error.

Many of the functions use a so called context:

struct snmp_context {

u_int var_index;

struct snmp_scratch *scratch;

struct snmp_dependency *dep;

void *data; /* user data */

enum snmp_ret code; /* return code */

};

struct snmp_scratch {

void *ptr1;

void *ptr2;

uint32_t int1;

uint32_t int2;

};

The fields are used as follows:

va_index For the node operation callback this is the index of the variable binding that should be

returned if an error occurs. Set by the library. In all other functions this is undefined.

scratch For the node operation callback this is a pointer to a per variable binding scratch area that

can be used to implement the commit and rollback. Set by the library.

dep In the dependency callback function (see below) this is a pointer to the current

dependency. Set by the library.

data This is the data argument from the call to the library and is not used by the library.

The next three functions execute different kinds of GET requests. The function snmp_get() executes an

SNMP GET operation, the function snmp_getnext() executes an SNMP GETNEXT operation and the

function snmp_getbulk() executes an SNMP GETBULK operation. For all three functions the response

PDU is constructed and encoded on the fly. If everything is ok, the response PDU is returned in resp

and resp_b. The caller must call snmp_pdu_free() to free the response PDU in this case. One of the

following values may be returned:

BSNMPAGENT(3) FreeBSD Library Functions Manual BSNMPAGENT(3)

FreeBSD 14.0-RELEASE-p11 October 4, 2005 FreeBSD 14.0-RELEASE-p11



SNMP_RET_OK Operation successful, response PDU may be sent.

SNMP_RET_IGN Operation failed, no response PDU constructed. Request is ignored.

SNMP_RET_ERR Error in operation. The error code and index have been set in pdu. No response

PDU has been constructed. The caller may construct an error response PDU via

snmp_make_errresp().

The function snmp_set() executes an SNMP SET operation. The arguments are the same as for the

previous three functions. The operation of this functions is, however, much more complex.

The SET operation occurs in several stages:

1. For each binding search the corresponding nodes, check that the variable is writeable and the

syntax is ok. The writeable check can be done only for scalars. For columns it must be done

in the node’s operation callback function.

2. For each binding call the node’s operation callback with function SNMP_OP_SET. The

callback may create dependencies or finalizers (see below). For simple scalars the scratch

area may be enough to handle commit and rollback, for interdependent table columns

dependencies may be necessary.

3. If the previous step fails at any point, the node’s operation callback functions are called for

all bindings for which SNMP_OP_SET was executed with SNMP_OP_ROLLBACK, in the

opposite order. This allows all variables to undo the effect of the SET operation. After this

all the dependencies are freed and the finalizers are executed with a fail flag of 1. Then the

function returns to the caller with an appropriate error indication.

4. If the SET step was successful for all bindings, the dependency callbacks are executed in the

order in which the dependencies were created with an operation of

SNMP_DEPOP_COMMIT. If any of the dependencies fails, all the committed dependencies

are called again in the opposite order with SNMP_DEPOP_ROLLBACK. Than for all

bindings from the last to the first the node’s operation callback is called with

SNMP_OP_ROLLBACK to undo the effect of SNMP_OP_SET. At the end the

dependencies are freed and the finalizers are called with a fail flag of 1 and the function

returns to the caller with an appropriate error indication.

5. If the dependency commits were successful, for each binding the node’s operation callback is

called with SNMP_OP_COMMIT. Any error returned from the callbacks is ignored (an

error message is generated via snmp_error().)

BSNMPAGENT(3) FreeBSD Library Functions Manual BSNMPAGENT(3)

FreeBSD 14.0-RELEASE-p11 October 4, 2005 FreeBSD 14.0-RELEASE-p11



6. Now the dependencies are freed and the finalizers are called with a fail flag of 0. For each

dependency just before freeing it its callback is called with SNMP_DEPOP_FINISH. Then

the function returns SNMP_ERR_OK.

There are to mechanisms to help in complex SET operations: dependencies and finalizers. A

dependency is used if several bindings depend on each other. A typical example is the creation of a

conceptual row, which requires the setting of several columns to succeed. A dependency is identified by

two OIDs. In the table case, the first oid is typically the table’s base OID and the second one the index.

Both of these can easily be generated from the variables OID with asn_slice_oid(). The function

snmp_dep_lookup() tries to find a dependency based on these two OIDs and, if it cannot find one creates

a new one. This means for the table example, that the function returns the same dependency for each of

the columns of the same table row. This allows during the SNMP_OP_SET processing to collect all

information about the row into the dependency. The arguments to snmp_dep_lookup() are: the two

OIDs to identify the dependency (they are copied into newly created dependencies), the size of the

structure to allocate and the dependency callback.

When all SNMP_OP_SET operations have succeeded the dependencies are executed. At this stage the

dependency callback has all information about the given table row that was available in this SET PDU

and can operate accordingly.

It is guaranteed that each dependency callback is executed at minimum once - with an operation of

SNMP_OP_ROLLBACK. This ensures that all dynamically allocated resources in a callback can be

freed correctly.

The function snmp_make_errresp() makes an error response if an operation has failed. It takes the

original request PDU (it will look only on the error code and index fields), the buffer containing the

original PDU and a buffer for the error PDU. It copies the bindings field from the original PDUs buffer

directly to the response PDU and thus does not depend on the decodability of this field. It may return

the same values as the operation functions.

The next four functions allow some parts of the SET operation to be executed. This is only used in

bsnmpd(1) to implement the configuration as a single transaction. The function snmp_init_context()
creates and initializes a context. The function snmp_dep_commit() executes SNMP_DEPOP_COMMIT

for all dependencies in the context stopping at the first error. The function snmp_dep_rollback()

executes SNMP_DEPOP_ROLLBACK starting at the previous of the current dependency in the context.

The function snmp_dep_finish() executes SNMP_DEPOP_FINISH for all dependencies.

DIAGNOSTICS
If an error occurs in any of the function an error indication as described above is returned. Additionally

the functions may call snmp_error on unexpected errors.

BSNMPAGENT(3) FreeBSD Library Functions Manual BSNMPAGENT(3)

FreeBSD 14.0-RELEASE-p11 October 4, 2005 FreeBSD 14.0-RELEASE-p11



SEE ALSO
gensnmptree(1), bsnmpd(1), bsnmpclient(3), bsnmplib(3), snmpmod(3)

STANDARDS
This implementation conforms to the applicable IETF RFCs and ITU-T recommendations.

AUTHORS
Hartmut Brandt <harti@FreeBSD.org>

BSNMPAGENT(3) FreeBSD Library Functions Manual BSNMPAGENT(3)

FreeBSD 14.0-RELEASE-p11 October 4, 2005 FreeBSD 14.0-RELEASE-p11


