
NAME
snmp_client, snmp_client_init, snmp_client_set_host, snmp_client_set_port, snmp_send_cb_f,
snmp_timeout_cb_f, snmp_timeout_start_f, snmp_timeout_stop_f, snmp_open, snmp_close,

snmp_pdu_create, snmp_add_binding, snmp_pdu_check, snmp_pdu_send, snmp_oid_append,

snmp_parse_server, snmp_receive, snmp_table_cb_f, snmp_table_fetch, snmp_table_fetch_async,

snmp_dialog, snmp_discover_engine - SNMP client library

LIBRARY
Begemot SNMP library (libbsnmp, -lbsnmp)

SYNOPSIS
#include <asn1.h>
#include <snmp.h>
#include <snmpclient.h>

typedef void

(*snmp_send_cb_f)(struct snmp_pdu *req, struct snmp_pdu *resp, void *uarg);

typedef void

(*snmp_timeout_cb_f)(void *uarg);

typedef void *

(*snmp_timeout_start_f)(struct timeval *timeout, snmp_timeout_cb_f callback, void *uarg);

typedef void

(*snmp_timeout_stop_f)(void *timeout_id);

extern struct snmp_client snmp_client;

void

snmp_client_init(struct snmp_client *client);

int

snmp_client_set_host(struct snmp_client *client, const char *host);

int

snmp_client_set_port(struct snmp_client *client, const char *port);

int

snmp_open(const char *host, const char *port, const char *read_community,

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



const char *write_community);

void

snmp_close(void);

void

snmp_pdu_create(struct snmp_pdu *pdu, u_int op);

int

snmp_add_binding(struct snmp_pdu *pdu, ...);

int

snmp_pdu_check(const struct snmp_pdu *req, const struct snmp_pdu *resp);

int32_t

snmp_pdu_send(struct snmp_pdu *pdu, snmp_send_cb_f func, void *uarg);

int

snmp_oid_append(struct asn_oid *oid, const char *fmt, ...);

int

snmp_parse_server(struct snmp_client *sc, const char *str);

int

snmp_receive(int blocking);

typedef void

(*snmp_table_cb_f)(void *list, void *arg, int res);

int

snmp_table_fetch(const struct snmp_table *descr, void *list);

int

snmp_table_fetch_async(const struct snmp_table *descr, void *list, snmp_table_cb_f callback,

void *uarg);

int

snmp_dialog(struct snmp_pdu *req, struct snmp_pdu *resp);

int

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



snmp_discover_engine(void);

DESCRIPTION
The SNMP library contains routines to easily build SNMP client applications that use SNMP versions 1,

2 or 3. Most of the routines use a struct snmp_client:

struct snmp_client {

enum snmp_version version;

int trans; /* which transport to use */

/* these two are read-only for the application */

char *cport; /* port number as string */

char *chost; /* host name or IP address as string */

char read_community[SNMP_COMMUNITY_MAXLEN + 1];

char write_community[SNMP_COMMUNITY_MAXLEN + 1];

/* SNMPv3 specific fields */

int32_t identifier;

int32_t security_model;

struct snmp_engine engine;

struct snmp_user user;

/* SNMPv3 Access control - VACM*/

uint32_t clen;

uint8_t cengine[SNMP_ENGINE_ID_SIZ];

char cname[SNMP_CONTEXT_NAME_SIZ];

struct timeval timeout;

u_int retries;

int dump_pdus;

size_t txbuflen;

size_t rxbuflen;

int fd;

int32_t next_reqid;

int32_t max_reqid;

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



int32_t min_reqid;

char error[SNMP_STRERROR_LEN];

snmp_timeout_start_f timeout_start;

snmp_timeout_stop_f timeout_stop;

char local_path[sizeof(SNMP_LOCAL_PATH)];

};

The fields of this structure are described below.

version This is the version of SNMP to use. See bsnmplib(3) for applicable values. The default

version is SNMP_V2c.

trans If this is SNMP_TRANS_LOC_DGRAM a local datagram socket is used. If it is

SNMP_TRANS_LOC_STREAM a local stream socket is used. For

SNMP_TRANS_UDP a UDPv4 socket and for SNMP_TRANS_UDP6 a UDPv6 socket

is created. It uses the chost field as the path to the server’s socket for local sockets.

cport The SNMP agent’s UDP port number. This may be a symbolic port number (from

/etc/services) or a numeric port number. If this field is NULL (the default) the standard

SNMP port is used. This field should not be changed directly but rather by calling

snmp_client_set_port().

chost The SNMP agent’s host name, IP address or UNIX domain socket path name. If this is

NULL (the default) localhost is assumed. This field should not be changed directly but

rather through calling snmp_client_set_host().

read_community

This is the community name to be used for all requests except SET requests. The default

is ‘public’.

write_community

The community name to be used for SET requests. The default is ‘private’.

identifier The message identifier value to be used with SNMPv3 PDUs. Incremented with each

transmitted PDU.

security_model

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



The security model to be used with SNMPv3 PDUs. Currently only User-Based Security

model specified by RFC 3414 (value 3) is supported.

engine The authoritive SNMP engine parameters to be used with SNMPv3 PDUs.

user The USM SNMP user credentials to be used with SNMPv3 PDUs.

clen The length of the context engine id to be used with SNMPv3 PDUs.

cengine The context engine id to be used with SNMPv3 PDUs. Default is empty.

cname The context name to be used with SNMPv3 PDUs. Default is ‘’.

timeout The maximum time to wait for responses to requests. If the time elapses, the request is

resent up to retries times. The default is 3 seconds.

retries Number of times a request PDU is to be resent. If set to 0, the request is sent only once.

The default is 3 retransmissions.

dump_pdus If set to a non-zero value all received and sent PDUs are dumped via snmp_pdu_dump(3).

The default is not to dump PDUs.

txbuflen The encoding buffer size to be allocated for transmitted PDUs. The default is 10000

octets.

rxbuflen The decoding buffer size to be allocated for received PDUs. This is the size of the

maximum PDU that can be received. The default is 10000 octets.

fd After calling snmp_open() this is the file socket file descriptor used for sending and

receiving PDUs.

next_reqid The request id of the next PDU to send. Used internal by the library.

max_reqid The maximum request id to use for outgoing PDUs. The default is INT32_MAX.

min_reqid The minimum request id to use for outgoing PDUs. Request ids are allocated linearily

starting at min_reqid up to max_reqid.

error If an error happens, this field is set to a printable string describing the error.

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



timeout_start This field must point to a function setting up a one shot timeout. After the timeout has

elapsed, the given callback function must be called with the user argument. The

timeout_start() function must return a void * identifying the timeout.

timeout_stop This field must be set to a function that stops a running timeout. The function will be

called with the return value of the corresponding timeout_start() function.

local_path If in local socket mode, the name of the clients socket. Not needed by the application.

In the current implementation there is a global variable

extern struct snmp_client snmp_client;

that is used by all the library functions. The first call into the library must be a call to snmp_client_init()
to initialize this global variable to the default values. After this call and before calling snmp_open() the

fields of the variable may be modified by the user. The modification of the chost and cport fields should

be done only via the functions snmp_client_set_host() and snmp_client_set_port().

The function snmp_open() creates a UDP or UNIX domain socket and connects it to the agent’s IP

address and port. If any of the arguments of the call is not NULL the corresponding field in the global

snmp_client is set from the argument. Otherwise the values that are already in that variable are used.

The function snmp_close() closes the socket, stops all timeouts and frees all dynamically allocated

resources.

The next three functions are used to create request PDUs. The function snmp_pdu_create() initializes a

PDU of type op. It does not allocate space for the PDU itself. This is the responsibility of the caller.

snmp_add_binding() adds bindings to the PDU and returns the (zero based) index of the first new

binding. The arguments are pairs of pointer to the OIDs and syntax constants, terminated by a NULL.

The call

snmp_add_binding(&pdu,

&oid1, SNMP_SYNTAX_INTEGER,

&oid2, SNMP_SYNTAX_OCTETSTRING,

NULL);

adds two new bindings to the PDU and returns the index of the first one. It is the responsibility of the

caller to set the value part of the binding if necessary. The functions returns -1 if the maximum number

of bindings is exhausted. The function snmp_oid_append() can be used to construct variable OIDs for

requests. It takes a pointer to an struct asn_oid that is to be constructed, a format string, and a number of

arguments the type of which depends on the format string. The format string is interpreted character by

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



character in the following way:

i This format expects an argument of type asn_subid_t and appends this as a single

integer to the OID.

a This format expects an argument of type struct in_addr and appends to four parts of

the IP address to the OID.

s This format expects an argument of type const char * and appends the length of the

string (as computed by strlen(3)) and each of the characters in the string to the OID.

(N) This format expects no argument. N must be a decimal number and is stored into an

internal variable size.

b This format expects an argument of type const char * and appends size characters

from the string to the OID. The string may contain NUL characters.

c This format expects two arguments: one of type size_t and one of type const u_char *.

The first argument gives the number of bytes to append to the OID from the string

pointed to by the second argument.

The function snmp_pdu_check() may be used to check a response PDU. A number of checks are

performed (error code, equal number of bindings, syntaxes and values for SET PDUs). The function

returns +1 if everything is ok, 0 if a NOSUCHNAME or similar error was detected, -1 if the response

PDU had fatal errors and -2 if resp is NULL (a timeout occurred).

The function snmp_pdu_send() encodes and sends the given PDU. It records the PDU together with the

callback and user pointers in an internal list and arranges for retransmission if no response is received.

When a response is received or the retransmission count is exceeded the callback func is called with the

original request PDU, the response PDU and the user argument uarg. If the retransmit count is

exceeded, func is called with the original request PDU, the response pointer set to NULL and the user

argument uarg. The caller should not free the request PDU until the callback function is called. The

callback function must free the request PDU and the response PDU (if not NULL ).

The function snmp_receive() tries to receive a PDU. If the argument is zero, the function polls to see

whether a packet is available, if the argument is non-zero, the function blocks until the next packet is

received. The packet is delivered via the usual callback mechanism (non-response packets are silently

dropped). The function returns 0, if a packet was received and successfully dispatched, -1 if an error

occurred or no packet was available (in polling mode).

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



The next two functions are used to retrieve tables from SNMP agents. They use the following input

structure, that describes the table:

struct snmp_table {

struct asn_oid table;

struct asn_oid last_change;

u_int max_iter;

size_t entry_size;

u_int index_size;

uint64_t req_mask;

struct snmp_table_entry {

asn_subid_t subid;

enum snmp_syntax syntax;

off_t offset;

} entries[];

};

The fields of this structure have the following meaning:

table This is the base OID of the table.

last_change Some tables have a scalar variable of type TIMETICKS attached to them, that holds the

time when the table was last changed. This OID should be the OID of this variable

(without the .0 index). When the table is retrieved with multiple GET requests, and the

variable changes between two request, the table fetch is restarted.

max_iter Maximum number of tries to fetch the table.

entry_size The table fetching routines return a list of structures one for each table row. This variable

is the size of one structure and used to malloc(3) the structure.

index_size This is the number of index columns in the table.

req_mask This is a bit mask with a 1 for each table column that is required. Bit 0 corresponds to the

first element (index 0) in the array entries, bit 1 to the second (index 1) and so on. SNMP

tables may be sparse. For sparse columns the bit should not be set. If the bit for a given

column is set and the column value cannot be retrieved for a given row, the table fetch is

restarted assuming that the table is currently being modified by the agent. The bits for the

index columns are ignored.

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



entries This is a variable sized array of column descriptors. This array is terminated by an element

with syntax SNMP_SYNTAX_NULL. The first index_size elements describe all the index

columns of the table, the rest are normal columns. If for the column at ‘entries[N]’ the

expression ‘req_mask & (1 << N)’ yields true, the column is considered a required column.

The fields of this the array elements have the following meaning:

subid This is the OID subid of the column. This is ignored for index entries. Index

entries are decoded according to the syntax field.

syntax This is the syntax of the column or index. A syntax of SNMP_SYNTAX_NULL

terminates the array.

offset This is the starting offset of the value of the column in the return structures. This

field can be set with the ISO-C offsetof() macro.

Both table fetching functions return TAILQ (see queue(3)) of structures--one for each table row. These

structures must start with a TAILQ_ENTRY() and a uint64_t and are allocated via malloc(3). The list

argument of the table functions must point to a TAILQ_HEAD(). The uint64_t fields, usually called

found is used to indicate which of the columns have been found for the given row. It is encoded like the

req_mask field.

The function snmp_table_fetch() synchronously fetches the given table. If everything is ok 0 is

returned. Otherwise the function returns -1 and sets an appropriate error string. The function

snmp_table_fetch_async() fetches the tables asynchronously. If either the entire table is fetch, or an

error occurs the callback function callback is called with the callers arguments list and uarg and a

parameter that is either 0 if the table was fetched, or -1 if there was an error. The function itself returns

-1 if it could not initialize fetching of the table.

The following table description is used to fetch the ATM interface table:

/*

* ATM interface table

*/

struct atmif {

TAILQ_ENTRY(atmif) link;

uint64_t found;

int32_t index;

u_char *ifname;

size_t ifnamelen;

uint32_t node_id;

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



uint32_t pcr;

int32_t media;

uint32_t vpi_bits;

uint32_t vci_bits;

uint32_t max_vpcs;

uint32_t max_vccs;

u_char *esi;

size_t esilen;

int32_t carrier;

};

TAILQ_HEAD(atmif_list, atmif);

/* list of all ATM interfaces */

struct atmif_list atmif_list;

static const struct snmp_table atmif_table = {

OIDX_begemotAtmIfTable,

OIDX_begemotAtmIfTableLastChange, 2,

sizeof(struct atmif),

1, 0x7ffULL,

{

{ 0, SNMP_SYNTAX_INTEGER,

offsetof(struct atmif, index) },

{ 1, SNMP_SYNTAX_OCTETSTRING,

offsetof(struct atmif, ifname) },

{ 2, SNMP_SYNTAX_GAUGE,

offsetof(struct atmif, node_id) },

{ 3, SNMP_SYNTAX_GAUGE,

offsetof(struct atmif, pcr) },

{ 4, SNMP_SYNTAX_INTEGER,

offsetof(struct atmif, media) },

{ 5, SNMP_SYNTAX_GAUGE,

offsetof(struct atmif, vpi_bits) },

{ 6, SNMP_SYNTAX_GAUGE,

offsetof(struct atmif, vci_bits) },

{ 7, SNMP_SYNTAX_GAUGE,

offsetof(struct atmif, max_vpcs) },

{ 8, SNMP_SYNTAX_GAUGE,

offsetof(struct atmif, max_vccs) },

{ 9, SNMP_SYNTAX_OCTETSTRING,

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



offsetof(struct atmif, esi) },

{ 10, SNMP_SYNTAX_INTEGER,

offsetof(struct atmif, carrier) },

{ 0, SNMP_SYNTAX_NULL, 0 }

}

};

...

if (snmp_table_fetch(&atmif_table, &atmif_list) != 0)

errx(1, "AtmIf table: %s", snmp_client.error);

...

The function snmp_dialog() is used to execute a synchonuous dialog with the agent. The request PDU

req is sent and the function blocks until the response PDU is received. Note, that asynchonuous receives

are handled (i.e. callback functions of other send calls or table fetches may be called while in the

function). The response PDU is returned in resp. If no response could be received after all timeouts and

retries, the function returns -1. If a response was received 0 is returned.

The function snmp_discover_engine() is used to discover the authoritative snmpEngineId of a remote

SNMPv3 agent. A request PDU with empty USM user name is sent and the client’s engine parameters

are set according to the snmpEngine parameters received in the response PDU. If the client is

configured to use authentication and/or privacy and the snmpEngineBoots and/or snmpEngineTime in

the response had zero values, an additional request (possibly encrypted) with the appropriate user

credentials is sent to fetch the missing values. Note, that the function blocks until the discovery process

is completed. If no response could be received after all timeouts and retries, or the response contained

errors the function returns -1. If the discovery process was completed 0 is returned.

The function snmp_parse_server() is used to parse an SNMP server specification string and fill in the

fields of a struct snmp_client. The syntax of a server specification is

[trans::][community@][server][:port]

where trans is the transport name (one of "udp", "udp6", "stream" or "dgram"), community is the string

to be used for both the read and the write community, server is the server’s host name in case of UDP

and the path name in case of a local socket, and port is the port in case of UDP transport. The function

returns 0 in the case of success and return -1 and sets the error string in case of an error.

The function snmp_parse_serverr() fills the transport, the port number and the community strings with

reasonable default values when they are not specified. The default transport is SNMP_TRANS_UDP.

If the host name contains a slash the default is modified to SNMP_TRANS_LOC_DGRAM. If the host

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11



name looks like a numeric IPv6 address the default is SNMP_TRANS_UDP6. For numeric IPv6

addresses the transport name udp is automatically translated as SNMP_TRANS_UDP6. The default

port number (for udp or udp6) is "snmp". The default read community is "public" and the default write

community "private".

snmp_parse_server() recognizes path names, host names and numerical IPv4 and IPv6 addresses. A

string consisting of digits and periods is assumed to be an IPv4 address and must be parseable by

inet_aton(3). An IPv6 address is any string enclosed in square brackets. It must be parseable with

gethostinfo(3).

The port number for snmp_parse_server() can be specified numerically or symbolically. It is ignored for

local sockets.

DIAGNOSTICS
If an error occurs in any of the functions an error indication as described above is returned. Additionally

the function sets a printable error string in the error field of snmp_client.

SEE ALSO
gensnmptree(1), bsnmpd(1), bsnmpagent(3), bsnmplib(3)

STANDARDS
This implementation conforms to the applicable IETF RFCs and ITU-T recommendations.

AUTHORS
Hartmut Brandt <harti@FreeBSD.org>

Kendy Kutzner <kutzner@fokus.gmd.de>

BSNMPCLIENT(3) FreeBSD Library Functions Manual BSNMPCLIENT(3)

FreeBSD 14.0-RELEASE-p11 March 31, 2020 FreeBSD 14.0-RELEASE-p11


