
NAME
socket - create an endpoint for communication

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int

socket(int domain, int type, int protocol);

DESCRIPTION
The socket() system call creates an endpoint for communication and returns a descriptor.

The domain argument specifies a communications domain within which communication will take place;

this selects the protocol family which should be used. These families are defined in the include file

<sys/socket.h>. The currently understood formats are:

PF_LOCAL Host-internal protocols (alias for PF_UNIX),

PF_UNIX Host-internal protocols,

PF_INET Internet version 4 protocols,

PF_INET6 Internet version 6 protocols,

PF_DIVERT Firewall packet diversion/re-injection,

PF_ROUTE Internal routing protocol,

PF_KEY Internal key-management function,

PF_NETGRAPH Netgraph sockets,

PF_NETLINK Netlink protocols,

PF_BLUETOOTH Bluetooth protocols,

PF_INET_SDP OFED socket direct protocol (IPv4),

AF_HYPERV HyperV sockets

Each protocol family is connected to an address family, which has the same name except that the prefix

is "AF_" in place of "PF_". Other protocol families may be also defined, beginning with "PF_", with

corresponding address families.

The socket has the indicated type, which specifies the semantics of communication. Currently defined

types are:

SOCK_STREAM Stream socket,

SOCKET(2) FreeBSD System Calls Manual SOCKET(2)

FreeBSD 14.0-RELEASE-p6 January 15, 2023 FreeBSD 14.0-RELEASE-p6



SOCK_DGRAM Datagram socket,

SOCK_RAW Raw-protocol interface,

SOCK_SEQPACKET Sequenced packet stream

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams. An

out-of-band data transmission mechanism may be supported. A SOCK_DGRAM socket supports

datagrams (connectionless, unreliable messages of a fixed (typically small) maximum length). A

SOCK_SEQPACKET socket may provide a sequenced, reliable, two-way connection-based data

transmission path for datagrams of fixed maximum length; a consumer may be required to read an entire

packet with each read system call. This facility may have protocol-specific properties. SOCK_RAW

sockets provide access to internal network protocols and interfaces. The SOCK_RAW type is available

only to the super-user and is described in ip(4) and ip6(4).

Additionally, the following flags are allowed in the type argument:

SOCK_CLOEXEC Set close-on-exec on the new descriptor,

SOCK_NONBLOCK Set non-blocking mode on the new socket

The protocol argument specifies a particular protocol to be used with the socket. Normally only a single

protocol exists to support a particular socket type within a given protocol family. However, it is possible

that many protocols may exist, in which case a particular protocol must be specified in this manner. The

protocol number to use is particular to the "communication domain" in which communication is to take

place; see protocols(5).

The protocol argument may be set to zero (0) to request the default implementation of a socket type for

the protocol, if any.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must

be in a connected state before any data may be sent or received on it. A connection to another socket is

created with a connect(2) system call. Once connected, data may be transferred using read(2) and

write(2) calls or some variant of the send(2) and recv(2) functions. (Some protocol families, such as the

Internet family, support the notion of an "implied connect", which permits data to be sent piggybacked

onto a connect operation by using the sendto(2) system call.) When a session has been completed a

close(2) may be performed. Out-of-band data may also be transmitted as described in send(2) and

received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM ensure that data is not lost or

duplicated. If a piece of data for which the peer protocol has buffer space cannot be successfully

transmitted within a reasonable length of time, then the connection is considered broken and calls will

indicate an error with -1 returns and with ETIMEDOUT as the specific code in the global variable errno.

SOCKET(2) FreeBSD System Calls Manual SOCKET(2)

FreeBSD 14.0-RELEASE-p6 January 15, 2023 FreeBSD 14.0-RELEASE-p6



The protocols optionally keep sockets "warm" by forcing transmissions roughly every minute in the

absence of other activity. An error is then indicated if no response can be elicited on an otherwise idle

connection for an extended period (e.g. 5 minutes). By default, a SIGPIPE signal is raised if a process

sends on a broken stream, but this behavior may be inhibited via setsockopt(2).

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only

difference is that read(2) calls will return only the amount of data requested, and any remaining in the

arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named in

send(2) calls. Datagrams are generally received with recvfrom(2), which returns the next datagram with

its return address.

An fcntl(2) system call can be used to specify a process group to receive a SIGURG signal when the out-

of-band data arrives. It may also enable non-blocking I/O and asynchronous notification of I/O events

via SIGIO.

The operation of sockets is controlled by socket level options. These options are defined in the file

<sys/socket.h>. The setsockopt(2) and getsockopt(2) system calls are used to set and get options,

respectively.

RETURN VALUES
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the socket.

ERRORS
The socket() system call fails if:

[EACCES] Permission to create a socket of the specified type and/or protocol is denied.

[EAFNOSUPPORT] The address family (domain) is not supported or the specified domain is not

supported by this protocol family.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[ENOBUFS] Insufficient buffer space is available. The socket cannot be created until sufficient

resources are freed.

[EPERM] User has insufficient privileges to carry out the requested operation.

SOCKET(2) FreeBSD System Calls Manual SOCKET(2)

FreeBSD 14.0-RELEASE-p6 January 15, 2023 FreeBSD 14.0-RELEASE-p6



[EPROTONOSUPPORT]

The protocol type or the specified protocol is not supported within this domain.

[EPROTOTYPE] The socket type is not supported by the protocol.

SEE ALSO
accept(2), bind(2), connect(2), divert(4), getpeername(2), getsockname(2), getsockopt(2), ioctl(2), ip(4),

ip6(4), listen(2), read(2), recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2),

CMSG_DATA(3), getprotoent(3), netgraph(4), protocols(5)

"An Introductory 4.3 BSD Interprocess Communication Tutorial", PS1, 7.

"BSD Interprocess Communication Tutorial", PS1, 8.

STANDARDS
The socket() function conforms to IEEE Std 1003.1-2008 ("POSIX.1"). The POSIX standard specifies

only the AF_INET, AF_INET6, and AF_UNIX constants for address families, and requires the use of

AF_* constants for the domain argument of socket(). The SOCK_CLOEXEC flag is expected to

conform to the next revision of the POSIX standard. The SOCK_RDM type, the PF_* constants, and

other address families are FreeBSD extensions.

HISTORY
The socket() system call appeared in 4.2BSD.

SOCKET(2) FreeBSD System Calls Manual SOCKET(2)

FreeBSD 14.0-RELEASE-p6 January 15, 2023 FreeBSD 14.0-RELEASE-p6


