
NAME
socket - kernel socket interface

SYNOPSIS
#include <sys/socket.h>
#include <sys/socketvar.h>

void

soabort(struct socket *so);

int

soaccept(struct socket *so, struct sockaddr **nam);

int

socheckuid(struct socket *so, uid_t uid);

int

sobind(struct socket *so, struct sockaddr *nam, struct thread *td);

void

soclose(struct socket *so);

int

soconnect(struct socket *so, struct sockaddr *nam, struct thread *td);

int

socreate(int dom, struct socket **aso, int type, int proto, struct ucred *cred, struct thread *td);

int

sodisconnect(struct socket *so);

void

sodtor_set(struct socket *so, void (*func)(struct socket *));

struct sockaddr *

sodupsockaddr(const struct sockaddr *sa, int mflags);

void

sofree(struct socket *so);

SOCKET(9) FreeBSD Kernel Developer’s Manual SOCKET(9)

FreeBSD 14.2-RELEASE September 6, 2022 FreeBSD 14.2-RELEASE

void

sohasoutofband(struct socket *so);

int

solisten(struct socket *so, int backlog, struct thread *td);

void

solisten_proto(struct socket *so, int backlog);

int

solisten_proto_check(struct socket *so);

struct socket *

sonewconn(struct socket *head, int connstatus);

int

sopoll(struct socket *so, int events, struct ucred *active_cred, struct thread *td);

int

sopoll_generic(struct socket *so, int events, struct ucred *active_cred, struct thread *td);

int

soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,

struct mbuf **controlp, int *flagsp);

int

soreceive_stream(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0,

struct mbuf **controlp, int *flagsp);

int

soreceive_dgram(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0,

struct mbuf **controlp, int *flagsp);

int

soreceive_generic(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0,

struct mbuf **controlp, int *flagsp);

int

soreserve(struct socket *so, u_long sndcc, u_long rcvcc);

SOCKET(9) FreeBSD Kernel Developer’s Manual SOCKET(9)

FreeBSD 14.2-RELEASE September 6, 2022 FreeBSD 14.2-RELEASE

void

sorflush(struct socket *so);

int

sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control,

int flags, struct thread *td);

int

sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top,

struct mbuf *control, int flags, struct thread *td);

int

sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top,

struct mbuf *control, int flags, struct thread *td);

int

soshutdown(struct socket *so, int how);

void

sotoxsocket(struct socket *so, struct xsocket *xso);

void

soupcall_clear(struct socket *so, int which);

void

soupcall_set(struct socket *so, int which, int (*func)(struct socket *, void *, int), void *arg);

void

sowakeup(struct socket *so, struct sockbuf *sb);

#include <sys/sockopt.h>

int

sosetopt(struct socket *so, struct sockopt *sopt);

int

sogetopt(struct socket *so, struct sockopt *sopt);

int

sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen);

SOCKET(9) FreeBSD Kernel Developer’s Manual SOCKET(9)

FreeBSD 14.2-RELEASE September 6, 2022 FreeBSD 14.2-RELEASE

int

sooptcopyout(struct sockopt *sopt, const void *buf, size_t len);

DESCRIPTION
The kernel socket programming interface permits in-kernel consumers to interact with local and network

socket objects in a manner similar to that permitted using the socket(2) user API. These interfaces are

appropriate for use by distributed file systems and other network-aware kernel services. While the user

API operates on file descriptors, the kernel interfaces operate directly on struct socket pointers. Some

portions of the kernel API exist only to implement the user API, and are not expected to be used by

kernel code. The portions of the socket API used by socket consumers and implementations of network

protocols will differ; some routines are only useful for protocol implementors.

Except where otherwise indicated, socket functions may sleep, and are not appropriate for use in an

interrupt thread context or while holding non-sleepable kernel locks.

Creating and Destroying Sockets
A new socket may be created using socreate(). As with socket(2), arguments specify the requested

domain, type, and protocol via dom, type, and proto. The socket is returned via aso on success. In

addition, the credential used to authorize operations associated with the socket will be passed via cred

(and will be cached for the lifetime of the socket), and the thread performing the operation via td.

Warning: authorization of the socket creation operation will be performed using the thread credential for

some protocols (such as raw sockets).

Sockets may be closed and freed using soclose(), which has similar semantics to close(2).

In certain circumstances, it is appropriate to destroy a socket without waiting for it to disconnect, for

which soabort() is used. This is only appropriate for incoming connections which are in a partially

connected state. It must be called on an unreferenced socket, by the thread which removed the socket

from its listen queue, to prevent races. It will call into protocol code, so no socket locks may be held

over the call. The caller of soabort() is responsible for setting the VNET context. The normal path to

freeing a socket is sofree(), which handles reference counting on the socket. It should be called

whenever a reference is released, and also whenever reference flags are cleared in socket or protocol

code. Calls to sofree() should not be made from outside the socket layer; outside callers should use

soclose() instead.

Connections and Addresses
The sobind() function is equivalent to the bind(2) system call, and binds the socket so to the address

nam. The operation would be authorized using the credential on thread td.

The soconnect() function is equivalent to the connect(2) system call, and initiates a connection on the

SOCKET(9) FreeBSD Kernel Developer’s Manual SOCKET(9)

FreeBSD 14.2-RELEASE September 6, 2022 FreeBSD 14.2-RELEASE

socket so to the address nam. The operation will be authorized using the credential on thread td. Unlike

the user system call, soconnect() returns immediately; the caller may msleep(9) on so->so_timeo while

holding the socket mutex and waiting for the SS_ISCONNECTING flag to clear or so->so_error to

become non-zero. If soconnect() fails, the caller must manually clear the SS_ISCONNECTING flag.

A call to sodisconnect() disconnects the socket without closing it.

The soshutdown() function is equivalent to the shutdown(2) system call, and causes part or all of a

connection on a socket to be closed down.

Sockets are transitioned from non-listening status to listening with solisten().

Socket Options
The sogetopt() function is equivalent to the getsockopt(2) system call, and retrieves a socket option on

socket so. The sosetopt() function is equivalent to the setsockopt(2) system call, and sets a socket option

on socket so.

The second argument in both sogetopt() and sosetopt() is the sopt pointer to a struct sopt describing the

socket option operation. The caller-allocated structure must be zeroed, and then have its fields

initialized to specify socket option operation arguments:

sopt_dir Set to SOPT_SET or SOPT_GET depending on whether this is a get or set operation.

sopt_level Specify the level in the network stack the operation is targeted at; for example,

SOL_SOCKET.

sopt_name Specify the name of the socket option to set.

sopt_val Kernel space pointer to the argument value for the socket option.

sopt_valsize Size of the argument value in bytes.

Socket Upcalls
In order for the owner of a socket to be notified when the socket is ready to send or receive data, an

upcall may be registered on the socket. The upcall is a function that will be called by the socket

framework when a socket buffer associated with the given socket is ready for reading or writing.

soupcall_set() is used to register a socket upcall. The function func is registered, and the pointer arg will

be passed as its second argument when it is called by the framework. The possible values for which are

SO_RCV and SO_SND, which register upcalls for receive and send events, respectively. The upcall

function func() must return either SU_OK or SU_ISCONNECTED, depending on whether or not a call

SOCKET(9) FreeBSD Kernel Developer’s Manual SOCKET(9)

FreeBSD 14.2-RELEASE September 6, 2022 FreeBSD 14.2-RELEASE

to soisconnected should be made by the socket framework after the upcall returns. The upcall func

cannot call soisconnected itself due to lock ordering with the socket buffer lock. Only SO_RCV upcalls

should return SU_ISCONNECTED. When a SO_RCV upcall returns SU_ISCONNECTED, the upcall

will be removed from the socket.

Upcalls are removed from their socket by soupcall_clear(). The which argument again specifies whether

the sending or receiving upcall is to be cleared, with SO_RCV or SO_SND.

Socket Destructor Callback
A kernel system can use the sodtor_set() function to set a destructor for a socket. The destructor is

called when the socket is about to be freed. The destructor is called before the protocol detach routine.

The destructor can serve as a callback to initiate additional cleanup actions.

Socket I/O
The soreceive() function is equivalent to the recvmsg(2) system call, and attempts to receive bytes of

data from the socket so, optionally blocking awaiting for data if none is ready to read. Data may be

retrieved directly to kernel or user memory via the uio argument, or as an mbuf chain returned to the

caller via mp0, avoiding a data copy. The uio must always be non-NULL. If mp0 is non-NULL, only

the uio_resid of uio is used. The caller may optionally retrieve a socket address on a protocol with the

PR_ADDR capability by providing storage via non-NULL psa argument. The caller may optionally

retrieve control data mbufs via a non-NULL controlp argument. Optional flags may be passed to

soreceive() via a non-NULL flagsp argument, and use the same flag name space as the recvmsg(2)

system call.

The sosend() function is equivalent to the sendmsg(2) system call, and attempts to send bytes of data via

the socket so, optionally blocking if data cannot be immediately sent. Data may be sent directly from

kernel or user memory via the uio argument, or as an mbuf chain via top, avoiding a data copy. Only

one of the uio or top pointers may be non-NULL. An optional destination address may be specified via

a non-NULL addr argument, which may result in an implicit connect if supported by the protocol. The

caller may optionally send control data mbufs via a non-NULL control argument. Flags may be passed

to sosend() using the flags argument, and use the same flag name space as the sendmsg(2) system call.

Kernel callers running in an interrupt thread context, or with a mutex held, will wish to use non-blocking

sockets and pass the MSG_DONTWAIT flag in order to prevent these functions from sleeping.

A socket can be queried for readability, writability, out-of-band data, or end-of-file using sopoll(). The

possible values for events are as for poll(2), with symbolic values POLLIN, POLLPRI, POLLOUT,

POLLRDNORM, POLLWRNORM, POLLRDBAND, and POLLINGEOF taken from <sys/poll.h>.

Calls to soaccept() pass through to the protocol’s accept routine to accept an incoming connection.

SOCKET(9) FreeBSD Kernel Developer’s Manual SOCKET(9)

FreeBSD 14.2-RELEASE September 6, 2022 FreeBSD 14.2-RELEASE

Socket Utility Functions
The uid of a socket’s credential may be compared against a uid with socheckuid().

A copy of an existing struct sockaddr may be made using sodupsockaddr().

Protocol implementations notify the socket layer of the arrival of out-of-band data using

sohasoutofband(), so that the socket layer can notify socket consumers of the available data.

An "external-format" version of a struct socket can be created using sotoxsocket(), suitable for isolating

user code from changes in the kernel structure.

Protocol Implementations
Protocols must supply an implementation for solisten(); such protocol implementations can call back

into the socket layer using solisten_proto_check() and solisten_proto() to check and set the socket-layer

listen state. These callbacks are provided so that the protocol implementation can order the socket layer

and protocol locks as necessary. Protocols must supply an implementation of soreceive(); the functions

soreceive_stream(), soreceive_dgram(), and soreceive_generic() are supplied for use by such

implementations.

Protocol implementations can use sonewconn() to create a socket and attach protocol state to that socket.

This can be used to create new sockets available for soaccept() on a listen socket. The returned socket

has a reference count of zero.

Protocols must supply an implementation for sopoll(); sopoll_generic() is provided for the use by

protocol implementations.

The functions sosend_dgram() and sosend_generic() are supplied to assist in protocol implementations

of sosend().

When a protocol creates a new socket structure, it is necessary to reserve socket buffer space for that

socket, by calling soreserve(). The rough inverse of this reservation is performed by sorflush(), which is

called automatically by the socket framework.

When a protocol needs to wake up threads waiting for the socket to become ready to read or write,

variants of sowakeup() are used. The sowakeup() function should not be called directly by protocol

code, instead use the wrappers sorwakeup(), sorwakeup_locked(), sowwakeup(), and

sowwakeup_locked() for readers and writers, with the corresponding socket buffer lock not already

locked, or already held, respectively.

The functions sooptcopyin() and sooptcopyout() are useful for transferring struct sockopt data between

SOCKET(9) FreeBSD Kernel Developer’s Manual SOCKET(9)

FreeBSD 14.2-RELEASE September 6, 2022 FreeBSD 14.2-RELEASE

user and kernel code.

SEE ALSO
bind(2), close(2), connect(2), getsockopt(2), recv(2), send(2), setsockopt(2), shutdown(2), socket(2),

ng_ksocket(4), intr_event(9), msleep(9), ucred(9)

HISTORY
The socket(2) system call appeared in 4.2BSD. This manual page was introduced in FreeBSD 7.0.

AUTHORS
This manual page was written by Robert Watson and

Benjamin Kaduk.

BUGS
The use of explicitly passed credentials, credentials hung from explicitly passed threads, the credential

on curthread, and the cached credential from socket creation time is inconsistent, and may lead to

unexpected behaviour. It is possible that several of the td arguments should be cred arguments, or

simply not be present at all.

The caller may need to manually clear SS_ISCONNECTING if soconnect() returns an error.

The MSG_DONTWAIT flag is not implemented for sosend(), and may not always work with

soreceive() when zero copy sockets are enabled.

This manual page does not describe how to register socket upcalls or monitor a socket for

readability/writability without using blocking I/O.

The soref() and sorele() functions are not described, and in most cases should not be used, due to

confusing and potentially incorrect interactions when sorele() is last called after soclose().

SOCKET(9) FreeBSD Kernel Developer’s Manual SOCKET(9)

FreeBSD 14.2-RELEASE September 6, 2022 FreeBSD 14.2-RELEASE

