
NAME
sort - perl pragma to control sort() behaviour

SYNOPSIS
use sort ’stable’; # guarantee stability

use sort ’defaults’; # revert to default behavior

no sort ’stable’; # stability not important

my $current;

BEGIN {

$current = sort::current(); # identify prevailing pragmata

}

DESCRIPTION
With the "sort" pragma you can control the behaviour of the builtin "sort()" function.

A stable sort means that for records that compare equal, the original input ordering is preserved.

Stability will matter only if elements that compare equal can be distinguished in some other way. That

means that simple numerical and lexical sorts do not profit from stability, since equal elements are

indistinguishable. However, with a comparison such as

{ substr($a, 0, 3) cmp substr($b, 0, 3) }

stability might matter because elements that compare equal on the first 3 characters may be

distinguished based on subsequent characters.

Whether sorting is stable by default is an accident of implementation that can change (and has

changed) between Perl versions. If stability is important, be sure to say so with a

use sort ’stable’;

The "no sort" pragma doesn’t forbid what follows, it just leaves the choice open. Thus, after

no sort ’stable’;

sorting may happen to be stable anyway.

CAVEATS
As of Perl 5.10, this pragma is lexically scoped and takes effect at compile time. In earlier versions its

effect was global and took effect at run-time; the documentation suggested using "eval()" to change the

sort(3) Perl Programmers Reference Guide sort(3)

perl v5.34.3 2023-11-28 sort(3)

behaviour:

{ eval ’no sort "stable"’; # stability not wanted

print sort::current . "\n";

@a = sort @b;

eval ’use sort "defaults"’; # clean up, for others

}

{ eval ’use sort qw(defaults stable)’; # force stability

print sort::current . "\n";

@c = sort @d;

eval ’use sort "defaults"’; # clean up, for others

}

Such code no longer has the desired effect, for two reasons. Firstly, the use of "eval()" means that the

sorting algorithm is not changed until runtime, by which time it’s too late to have any effect. Secondly,

"sort::current" is also called at run-time, when in fact the compile-time value of "sort::current" is the

one that matters.

So now this code would be written:

{ no sort "stable"; # stability not wanted

my $current;

BEGIN { $current = sort::current; }

print "$current\n";

@a = sort @b;

Pragmas go out of scope at the end of the block

}

{ use sort qw(defaults stable); # force stability

my $current;

BEGIN { $current = sort::current; }

print "$current\n";

@c = sort @d;

}

sort(3) Perl Programmers Reference Guide sort(3)

perl v5.34.3 2023-11-28 sort(3)

