
NAME
rand, srand, rand_r - bad random number generator

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

void

srand(unsigned seed);

int

rand(void);

int

rand_r(unsigned *ctx);

DESCRIPTION
The functions described in this manual page are not cryptographically secure. Applications which
require unpredictable random numbers should use arc4random(3) instead.

The rand() function computes a sequence of pseudo-random integers in the range of 0 to RAND_MAX,

inclusive.

The srand() function seeds the algorithm with the seed parameter. Repeatable sequences of rand()

output may be obtained by calling srand() with the same seed. rand() is implicitly initialized as if

srand(1) had been invoked explicitly.

In FreeBSD 13, rand() is implemented using the same 128-byte state LFSR generator algorithm as

random(3). However, the legacy rand_r() function is not (and can not be, because of its limited *ctx

size). rand_r() implements the historical, poor-quality Park-Miller 32-bit LCG and should not be used in

new designs.

IMPLEMENTATION NOTES
Since FreeBSD 13, rand() is implemented with the same generator as random(3), so the low-order bits

should no longer be significantly worse than the high-order bits.

SEE ALSO
arc4random(3), random(3), random(4)

RAND(3) FreeBSD Library Functions Manual RAND(3)

FreeBSD 14.0-RELEASE-p6 February 1, 2020 FreeBSD 14.0-RELEASE-p6



STANDARDS
The rand() and srand() functions conform to ISO/IEC 9899:1990 ("ISO C90").

The rand_r() function is not part of ISO/IEC 9899:1990 ("ISO C90") and is marked obsolescent in IEEE

Std 1003.1-2008 ("POSIX.1"). It may be removed in a future revision of POSIX.

CAVEATS
Prior to FreeBSD 13, rand() used the historical Park-Miller generator with 32 bits of state and produced

poor quality output, especially in the lower bits. rand() in earlier versions of FreeBSD, as well as other

standards-conforming implementations, may continue to produce poor quality output.

These functions should not be used in portable applications that want a high quality or high performance

pseudorandom number generator. One possible replacement, random(3), is portable to Linux -- but it is

not especially fast, nor standardized.

If broader portability or better performance is desired, any of the widely available and permissively

licensed SFC64/32, JSF64/32, PCG64/32, or SplitMix64 algorithm implementations may be embedded

in your application. These algorithms have the benefit of requiring less space than random(3) and being

quite fast (in header inline implementations).

RAND(3) FreeBSD Library Functions Manual RAND(3)

FreeBSD 14.0-RELEASE-p6 February 1, 2020 FreeBSD 14.0-RELEASE-p6


