
NAME
strlcpy, strlcat - size-bounded string copying and concatenation

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <string.h>

size_t

strlcpy(char * restrict dst, const char * restrict src, size_t dstsize);

size_t

strlcat(char * restrict dst, const char * restrict src, size_t dstsize);

DESCRIPTION
The strlcpy() and strlcat() functions copy and concatenate strings with the same input parameters and

output result as snprintf(3). They are designed to be safer, more consistent, and less error prone

replacements for the easily misused functions strncpy(3) and strncat(3).

strlcpy() and strlcat() take the full size of the destination buffer and guarantee NUL-termination if there

is room. Note that room for the NUL should be included in dstsize.

strlcpy() copies up to dstsize - 1 characters from the string src to dst, NUL-terminating the result if

dstsize is not 0.

strlcat() appends string src to the end of dst. It will append at most dstsize - strlen(dst) - 1 characters. It

will then NUL-terminate, unless dstsize is 0 or the original dst string was longer than dstsize (in practice

this should not happen as it means that either dstsize is incorrect or that dst is not a proper string).

If the src and dst strings overlap, the behavior is undefined.

RETURN VALUES
Besides quibbles over the return type (size_t versus int) and signal handler safety (snprintf(3) is not

entirely safe on some systems), the following two are equivalent:

n = strlcpy(dst, src, len);

n = snprintf(dst, len, "%s", src);

Like snprintf(3), the strlcpy() and strlcat() functions return the total length of the string they tried to

STRLCPY(3) FreeBSD Library Functions Manual STRLCPY(3)

FreeBSD 14.0-RELEASE-p11 May 1, 2020 FreeBSD 14.0-RELEASE-p11



create. For strlcpy() that means the length of src. For strlcat() that means the initial length of dst plus

the length of src.

If the return value is >= dstsize, the output string has been truncated. It is the caller’s responsibility to

handle this.

EXAMPLES
The following code fragment illustrates the simple case:

char *s, *p, buf[BUFSIZ];

...

(void)strlcpy(buf, s, sizeof(buf));

(void)strlcat(buf, p, sizeof(buf));

To detect truncation, perhaps while building a pathname, something like the following might be used:

char *dir, *file, pname[MAXPATHLEN];

...

if (strlcpy(pname, dir, sizeof(pname)) >= sizeof(pname))

goto toolong;

if (strlcat(pname, file, sizeof(pname)) >= sizeof(pname))

goto toolong;

Since it is known how many characters were copied the first time, things can be sped up a bit by using a

copy instead of an append:

char *dir, *file, pname[MAXPATHLEN];

size_t n;

...

n = strlcpy(pname, dir, sizeof(pname));

if (n >= sizeof(pname))

goto toolong;

if (strlcpy(pname + n, file, sizeof(pname) - n) >= sizeof(pname) - n)

goto toolong;

STRLCPY(3) FreeBSD Library Functions Manual STRLCPY(3)

FreeBSD 14.0-RELEASE-p11 May 1, 2020 FreeBSD 14.0-RELEASE-p11



However, one may question the validity of such optimizations, as they defeat the whole purpose of

strlcpy() and strlcat(). As a matter of fact, the first version of this manual page got it wrong.

SEE ALSO
snprintf(3), strncat(3), strncpy(3), wcslcpy(3)

Todd C. Miller and Theo de Raadt, "strlcpy and strlcat -- Consistent, Safe, String Copy and

Concatenation", Proceedings of the FREENIX Track: 1999 USENIX Annual Technical Conference,

USENIX Association,

http://www.usenix.org/publications/library/proceedings/usenix99/full_papers/millert/millert.pdf, June

6-11, 1999.

HISTORY
The strlcpy() and strlcat() functions first appeared in OpenBSD 2.4, and FreeBSD 3.3.

STRLCPY(3) FreeBSD Library Functions Manual STRLCPY(3)

FreeBSD 14.0-RELEASE-p11 May 1, 2020 FreeBSD 14.0-RELEASE-p11


