
NAME
vis, nvis, strvis, stravis, strnvis, strvisx, strnvisx, strenvisx, svis, snvis, strsvis, strsnvis, strsvisx,

strsnvisx, strsenvisx - visually encode characters

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <vis.h>

char *

vis(char *dst, int c, int flag, int nextc);

char *

nvis(char *dst, size_t dlen, int c, int flag, int nextc);

int

strvis(char *dst, const char *src, int flag);

int

stravis(char **dst, const char *src, int flag);

int

strnvis(char *dst, size_t dlen, const char *src, int flag);

int

strvisx(char *dst, const char *src, size_t len, int flag);

int

strnvisx(char *dst, size_t dlen, const char *src, size_t len, int flag);

int

strenvisx(char *dst, size_t dlen, const char *src, size_t len, int flag, int *cerr_ptr);

char *

svis(char *dst, int c, int flag, int nextc, const char *extra);

char *

snvis(char *dst, size_t dlen, int c, int flag, int nextc, const char *extra);

VIS(3) FreeBSD Library Functions Manual VIS(3)

FreeBSD 14.0-RELEASE-p11 April 22, 2017 FreeBSD 14.0-RELEASE-p11

int

strsvis(char *dst, const char *src, int flag, const char *extra);

int

strsnvis(char *dst, size_t dlen, const char *src, int flag, const char *extra);

int

strsvisx(char *dst, const char *src, size_t len, int flag, const char *extra);

int

strsnvisx(char *dst, size_t dlen, const char *src, size_t len, int flag, const char *extra);

int

strsenvisx(char *dst, size_t dlen, const char *src, size_t len, int flag, const char *extra, int *cerr_ptr);

DESCRIPTION
The vis() function copies into dst a string which represents the character c. If c needs no encoding, it is

copied in unaltered. The string is null terminated, and a pointer to the end of the string is returned. The

maximum length of any encoding is four bytes (not including the trailing NUL); thus, when encoding a

set of characters into a buffer, the size of the buffer should be four times the number of bytes encoded,

plus one for the trailing NUL. The flag parameter is used for altering the default range of characters

considered for encoding and for altering the visual representation. The additional character, nextc, is

only used when selecting the VIS_CSTYLE encoding format (explained below).

The strvis(), stravis(), strnvis(), strvisx(), and strnvisx() functions copy into dst a visual representation of

the string src. The strvis() and strnvis() functions encode characters from src up to the first NUL. The

strvisx() and strnvisx() functions encode exactly len characters from src (this is useful for encoding a

block of data that may contain NUL’s). Both forms NUL terminate dst. The size of dst must be four

times the number of bytes encoded from src (plus one for the NUL). Both forms return the number of

characters in dst (not including the trailing NUL). The stravis() function allocates space dynamically to

hold the string. The "n" versions of the functions also take an additional argument dlen that indicates the

length of the dst buffer. If dlen is not large enough to fit the converted string then the strnvis() and

strnvisx() functions return -1 and set errno to ENOSPC. The strenvisx() function takes an additional

argument, cerr_ptr, that is used to pass in and out a multibyte conversion error flag. This is useful when

processing single characters at a time when it is possible that the locale may be set to something other

than the locale of the characters in the input data.

The functions svis(), snvis(), strsvis(), strsnvis(), strsvisx(), strsnvisx(), and strsenvisx() correspond to

vis(), nvis(), strvis(), strnvis(), strvisx(), strnvisx(), and strenvisx() but have an additional argument

extra, pointing to a NUL terminated list of characters. These characters will be copied encoded or

VIS(3) FreeBSD Library Functions Manual VIS(3)

FreeBSD 14.0-RELEASE-p11 April 22, 2017 FreeBSD 14.0-RELEASE-p11

backslash-escaped into dst. These functions are useful e.g. to remove the special meaning of certain

characters to shells.

The encoding is a unique, invertible representation composed entirely of graphic characters; it can be

decoded back into the original form using the unvis(3), strunvis(3) or strnunvis(3) functions.

There are two parameters that can be controlled: the range of characters that are encoded (applies only to

vis(), nvis(), strvis(), strnvis(), strvisx(), and strnvisx()), and the type of representation used. By default,

all non-graphic characters, except space, tab, and newline are encoded (see isgraph(3)). The following

flags alter this:

VIS_DQ Also encode double quotes

VIS_GLOB Also encode the magic characters (‘*’, ‘?’, ‘[’, and ‘#’) recognized by glob(3).

VIS_SHELL Also encode the meta characters used by shells (in addition to the glob characters): (‘’’,

‘‘’, ‘"’, ‘;’, ‘&’, ‘<’, ‘>’, ‘(’, ‘)’, ‘|’, ‘]’, ‘\’, ‘$’, ‘!’, ‘^’, and ‘~’).

VIS_SP Also encode space.

VIS_TAB Also encode tab.

VIS_NL Also encode newline.

VIS_WHITE Synonym for VIS_SP | VIS_TAB | VIS_NL.

VIS_META Synonym for VIS_WHITE | VIS_GLOB | VIS_SHELL.

VIS_SAFE Only encode "unsafe" characters. Unsafe means control characters which may cause

common terminals to perform unexpected functions. Currently this form allows space,

tab, newline, backspace, bell, and return -- in addition to all graphic characters --

unencoded.

(The above flags have no effect for svis(), snvis(), strsvis(), strsnvis(), strsvisx(), and strsnvisx(). When

using these functions, place all graphic characters to be encoded in an array pointed to by extra. In

general, the backslash character should be included in this array, see the warning on the use of the

VIS_NOSLASH flag below).

There are six forms of encoding. All forms use the backslash character ‘\’ to introduce a special

sequence; two backslashes are used to represent a real backslash, except VIS_HTTPSTYLE that uses

VIS(3) FreeBSD Library Functions Manual VIS(3)

FreeBSD 14.0-RELEASE-p11 April 22, 2017 FreeBSD 14.0-RELEASE-p11

‘%’, or VIS_MIMESTYLE that uses ‘=’. These are the visual formats:

(default) Use an ‘M’ to represent meta characters (characters with the 8th bit set), and use caret

‘^’ to represent control characters (see iscntrl(3)). The following formats are used:

\^C Represents the control character ‘C’. Spans characters ‘\000’ through ‘\037’, and

‘\177’ (as ‘\^?’).

\M-C Represents character ‘C’ with the 8th bit set. Spans characters ‘\241’ through

‘\376’.

\M^C Represents control character ‘C’ with the 8th bit set. Spans characters ‘\200’

through ‘\237’, and ‘\377’ (as ‘\M^?’).

\040 Represents ASCII space.

\240 Represents Meta-space.

VIS_CSTYLE Use C-style backslash sequences to represent standard non-printable characters. The

following sequences are used to represent the indicated characters:

\a -- BEL (007)

\b -- BS (010)

\f -- NP (014)

\n -- NL (012)

\r -- CR (015)

\s -- SP (040)

\t -- HT (011)

\v -- VT (013)

\0 -- NUL (000)

When using this format, the nextc parameter is looked at to determine if a NUL

character can be encoded as ‘\0’ instead of ‘\000’. If nextc is an octal digit, the latter

representation is used to avoid ambiguity.

Non-printable characters without C-style backslash sequences use the default

representation.

VIS_OCTAL Use a three digit octal sequence. The form is ‘\ddd’ where d represents an octal digit.

VIS(3) FreeBSD Library Functions Manual VIS(3)

FreeBSD 14.0-RELEASE-p11 April 22, 2017 FreeBSD 14.0-RELEASE-p11

VIS_CSTYLE | VIS_OCTAL

Same as VIS_CSTYLE except that non-printable characters without C-style backslash

sequences use a three digit octal sequence.

VIS_HTTPSTYLE

Use URI encoding as described in RFC 1738. The form is ‘%xx’ where x represents a

lower case hexadecimal digit.

VIS_MIMESTYLE

Use MIME Quoted-Printable encoding as described in RFC 2045, only don’t break lines

and don’t handle CRLF. The form is ‘=XX’ where X represents an upper case

hexadecimal digit.

There is one additional flag, VIS_NOSLASH, which inhibits the doubling of backslashes and the

backslash before the default format (that is, control characters are represented by ‘^C’ and meta

characters as ‘M-C’). With this flag set, the encoding is ambiguous and non-invertible.

MULTIBYTE CHARACTER SUPPORT
These functions support multibyte character input. The encoding conversion is influenced by the setting

of the LC_CTYPE environment variable which defines the set of characters that can be copied without

encoding.

If VIS_NOLOCALE is set, processing is done assuming the C locale and overriding any other

environment settings.

When 8-bit data is present in the input, LC_CTYPE must be set to the correct locale or to the C locale.

If the locales of the data and the conversion are mismatched, multibyte character recognition may fail

and encoding will be performed byte-by-byte instead.

As noted above, dst must be four times the number of bytes processed from src. But note that each

multibyte character can be up to MB_LEN_MAX bytes so in terms of multibyte characters, dst must be

four times MB_LEN_MAX times the number of characters processed from src.

ENVIRONMENT
LC_CTYPE Specify the locale of the input data. Set to C if the input data locale is unknown.

ERRORS
The functions nvis() and snvis() will return NULL and the functions strnvis(), strnvisx(), strsnvis(), and

strsnvisx(), will return -1 when the dlen destination buffer size is not enough to perform the conversion

while setting errno to:

VIS(3) FreeBSD Library Functions Manual VIS(3)

FreeBSD 14.0-RELEASE-p11 April 22, 2017 FreeBSD 14.0-RELEASE-p11

[ENOSPC] The destination buffer size is not large enough to perform the conversion.

SEE ALSO
unvis(1), vis(1), glob(3), unvis(3)

T. Berners-Lee, Uniform Resource Locators (URL), RFC 1738.

Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies, RFC

2045.

HISTORY
The vis(), strvis(), and strvisx() functions first appeared in 4.4BSD. The svis(), strsvis(), and strsvisx()

functions appeared in NetBSD 1.5 and FreeBSD 9.2. The buffer size limited versions of the functions

(nvis(), strnvis(), strnvisx(), snvis(), strsnvis(), and strsnvisx()) appeared in NetBSD 6.0 and

FreeBSD 9.2. Multibyte character support was added in NetBSD 7.0 and FreeBSD 9.2.

VIS(3) FreeBSD Library Functions Manual VIS(3)

FreeBSD 14.0-RELEASE-p11 April 22, 2017 FreeBSD 14.0-RELEASE-p11

