
NAME
style - kernel source file style guide

DESCRIPTION
This file specifies the preferred style for kernel source files in the FreeBSD source tree. It is also a guide

for the preferred userland code style. The preferred line width is 80 characters, but some exceptions are

made when a slightly longer line is clearer or easier to read. Anything that is frequently grepped for,

such as diagnostic, error, or panic messages, should not be broken up over multiple lines despite this

rule. Many of the style rules are implicit in the examples. Be careful to check the examples before

assuming that style is silent on an issue.

/*

* Style guide for FreeBSD. Based on the CSRG’s KNF (Kernel Normal Form).

*

* @(#)style1.14 (Berkeley) 4/28/95

*/

/*

* VERY important single-line comments look like this.

*/

/* Most single-line comments look like this. */

/*

* Multi-line comments look like this. Make them real sentences. Fill

* them so they look like real paragraphs.

*/

The copyright header should be a multi-line comment, with the first line of the comment having a dash

after the star like so:

/*-

* SPDX-License-Identifier: BSD-2-Clause

*

* Copyright (c) 1984-2025 John Q. Public

*

* Long, boring license goes here, but trimmed for brevity

*/

An automatic script collects license information from the tree for all comments that start in the first

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

column with "/*-". If you desire to flag indent(1) to not reformat a comment that starts in the first

column which is not a license or copyright notice, change the dash to a star for those comments.

Comments starting in columns other than the first are never considered license statements. Use the

appropriate SPDX-License-Identifier line before the copyright. If the copyright assertion contains the

phrase "All Rights Reserved" that should be on the same line as the word "Copyright". You should not

insert a new copyright line between an old copyright line and this phrase. Instead, you should insert a

new copyright phrase after a pre-existing "All Rights Reserved" line. When making changes, it is

acceptable to fold an "All Rights Reserved" line with each of the "Copyright" lines. For files that have

the "All Rights Reserved" line on the same line(s) as the word "Copyright", new copyright assertions

should be added last. New "Copyright" lines should only be added when making substantial changes to

the file, not for trivial changes.

After any copyright and license comment, there is a blank line. Include $FreeBSD$ or

__FBSDID("$FreeBSD$"); only if you are certain the new code will be merged to stable/12. The tag

will be removed from legacy code in the future. Non-C/C++ source files follow the example above,

while C/C++ source files follow the one below. Version control system ID tags should only exist once

in a file (unlike in this one). All VCS (version control system) revision identification in files obtained

from elsewhere should be maintained, including, where applicable, multiple IDs showing a file’s history.

In general, do not edit foreign IDs or their infrastructure. Unless otherwise wrapped (such as "#if

defined(LIBC_SCCS)"), enclose both in "#if 0 ... #endif" to hide any uncompilable bits and to keep the

IDs out of object files. Only add "From: " in front of foreign VCS IDs if the file is renamed. Add

"From: " and FreeBSD git hash with full path name if the file was derived from another FreeBSD file

and include relevant copyright info from the original file.

/* From: @(#)style 1.14 (Berkeley) 4/28/95 */

Leave one blank line before the header files.

Kernel include files (sys/*.h) come first. If <sys/cdefs.h> is needed for __FBSDID(), include it first. If

either <sys/types.h> or <sys/param.h> is needed, include it before other include files. (<sys/param.h>

includes <sys/types.h>; do not include both.) Next, include <sys/systm.h>, if needed. The remaining

kernel headers should be sorted alphabetically.

#include <sys/types.h> /* Non-local includes in angle brackets. */

#include <sys/systm.h>

#include <sys/endian.h>

#include <sys/lock.h>

#include <sys/queue.h>

For a network program, put the network include files next.

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

#include <net/if.h>

#include <net/if_dl.h>

#include <net/route.h>

#include <netinet/in.h>

#include <protocols/rwhod.h>

Do not include files from /usr/include in the kernel.

Leave a blank line before the next group, the /usr/include files, which should be sorted alphabetically by

name.

#include <stdio.h>

Global pathnames are defined in <paths.h>. Pathnames local to the program go in "pathnames.h" in the

local directory.

#include <paths.h>

Leave another blank line before the local include files.

#include "pathnames.h" /* Local includes in double quotes. */

Do not #define or declare names in the implementation namespace except for implementing application

interfaces.

The names of "unsafe" macros (ones that have side effects), and the names of macros for manifest

constants, are all in uppercase. The expansions of expression-like macros are either a single token or

have outer parentheses. Put a single space or tab character between the #define and the macro name, but

be consistent within a file. If a macro is an inline expansion of a function, the function name is all in

lowercase and the macro has the same name all in uppercase. Right-justify the backslashes; it makes it

easier to read. If the macro encapsulates a compound statement, enclose it in a do loop, so that it can

safely be used in if statements. Any final statement-terminating semicolon should be supplied by the

macro invocation rather than the macro, to make parsing easier for pretty-printers and editors.

#define MACRO(x, y) do { \

variable = (x) + (y); \

(y) += 2; \

} while (0)

When code is conditionally compiled using #ifdef or #if, a comment may be added following the

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

matching #endif or #else to permit the reader to easily discern where conditionally compiled code

regions end. This comment should be used only for (subjectively) long regions, regions greater than 20

lines, or where a series of nested #ifdef ’s may be confusing to the reader. The comment should be

separated from the #endif or #else by a single space. For short conditionally compiled regions, a closing

comment should not be used.

The comment for #endif should match the expression used in the corresponding #if or #ifdef. The

comment for #else and #elif should match the inverse of the expression(s) used in the preceding #if
and/or #elif statements. In the comments, the subexpression "defined(FOO)" is abbreviated as "FOO".

For the purposes of comments, "#ifndef FOO" is treated as "#if !defined(FOO)".

#ifdef KTRACE

#include <sys/ktrace.h>

#endif

#ifdef COMPAT_43

/* A large region here, or other conditional code. */

#else /* !COMPAT_43 */

/* Or here. */

#endif /* COMPAT_43 */

#ifndef COMPAT_43

/* Yet another large region here, or other conditional code. */

#else /* COMPAT_43 */

/* Or here. */

#endif /* !COMPAT_43 */

The project prefers the use of ISO/IEC 9899:1999 ("ISO C99") unsigned integer identifiers of the form

uintXX_t rather than the older BSD-style integer identifiers of the form u_intXX_t. New code should

use the former, and old code should be converted to the new form if other major work is being done in

that area and there is no overriding reason to prefer the older BSD-style. Like white-space commits,

care should be taken in making uintXX_t only commits.

Similarly, the project prefers the use of ISO C99 bool rather than the older int or boolean_t. New code

should use bool, and old code may be converted if it is reasonable to do so. Literal values are named

true and false. These are preferred to the old spellings TRUE and FALSE. Userspace code should

include <stdbool.h>, while kernel code should include <sys/types.h>.

Likewise, the project prefers ISO C99 designated initializers when it makes sense to do so.

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

Enumeration values are all uppercase.

enum enumtype { ONE, TWO } et;

The use of internal_underscores in identifiers is preferred over camelCase or TitleCase.

In declarations, do not put any whitespace between asterisks and adjacent tokens, except for tokens that

are identifiers related to types. (These identifiers are the names of basic types, type qualifiers, and

typedef-names other than the one being declared.) Separate these identifiers from asterisks using a

single space.

When declaring variables in structures, declare them sorted by use, then by size (largest to smallest), and

then in alphabetical order. The first category normally does not apply, but there are exceptions. Each

one gets its own line. Try to make the structure readable by aligning the member names using either one

or two tabs depending upon your judgment. You should use one tab only if it suffices to align at least

90% of the member names. Names following extremely long types should be separated by a single

space.

Major structures should be declared at the top of the file in which they are used, or in separate header

files if they are used in multiple source files. Use of the structures should be by separate declarations

and should be extern if they are declared in a header file.

struct foo {

struct foo *next; /* List of active foo. */

struct mumble amumble; /* Comment for mumble. */

int bar; /* Try to align the comments. */

struct verylongtypename *baz; /* Does not fit in 2 tabs. */

};

struct foo *foohead; /* Head of global foo list. */

Use queue(3) macros rather than rolling your own lists, whenever possible. Thus, the previous example

would be better written:

#include <sys/queue.h>

struct foo {

LIST_ENTRY(foo)link; /* Use queue macros for foo lists. */

struct mumble amumble; /* Comment for mumble. */

int bar; /* Try to align the comments. */

struct verylongtypename *baz; /* Does not fit in 2 tabs. */

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

};

LIST_HEAD(, foo) foohead; /* Head of global foo list. */

Avoid using typedefs for structure types. Typedefs are problematic because they do not properly hide

their underlying type; for example you need to know if the typedef is the structure itself or a pointer to

the structure. In addition they must be declared exactly once, whereas an incomplete structure type can

be mentioned as many times as necessary. Typedefs are difficult to use in stand-alone header files: the

header that defines the typedef must be included before the header that uses it, or by the header that uses

it (which causes namespace pollution), or there must be a back-door mechanism for obtaining the

typedef.

When convention requires a typedef, make its name match the struct tag. Avoid typedefs ending in "_t",

except as specified in Standard C or by POSIX.

/* Make the structure name match the typedef. */

typedef struct bar {

int level;

} BAR;

typedef int foo; /* This is foo. */

typedef const long baz; /* This is baz. */

All functions are prototyped somewhere.

Function prototypes for private functions (i.e., functions not used elsewhere) go at the top of the first

source module. Functions local to one source module should be declared static.

Functions used from other parts of the kernel are prototyped in the relevant include file. Function

prototypes should be listed in a logical order, preferably alphabetical unless there is a compelling reason

to use a different ordering.

Functions that are used locally in more than one module go into a separate header file, e.g., "extern.h".

In general code can be considered "new code" when it makes up about 50% or more of the file(s)

involved. This is enough to break precedents in the existing code and use the current style guidelines.

The kernel has a name associated with parameter types, e.g., in the kernel use:

void function(int fd);

In header files visible to userland applications, prototypes that are visible must use either "protected"

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

names (ones beginning with an underscore) or no names with the types. It is preferable to use protected

names. E.g., use:

void function(int);

or:

void function(int _fd);

Prototypes may have an extra space after a tab to enable function names to line up:

static char *function(int _arg, const char *_arg2, struct foo *_arg3,

struct bar *_arg4);

static void usage(void);

/*

* All major routines should have a comment briefly describing what

* they do. The comment before the "main" routine should describe

* what the program does.

*/

int

main(int argc, char *argv[])

{

char *ep;

long num;

int ch;

For consistency, getopt(3) should be used to parse options. Options should be sorted in the getopt(3)

call and the switch statement, unless parts of the switch cascade. Elements in a switch statement that

cascade should have a FALLTHROUGH comment. Numerical arguments should be checked for

accuracy. Code which is unreachable for non-obvious reasons may be marked /* NOTREACHED */.

while ((ch = getopt(argc, argv, "abNn:")) != -1)

switch (ch) { /* Indent the switch. */

case ’a’: /* Do not indent the case. */

aflag = 1; /* Indent case body one tab. */

/* FALLTHROUGH */

case ’b’:

bflag = 1;

break;

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

case ’N’:

Nflag = 1;

break;

case ’n’:

num = strtol(optarg, &ep, 10);

if (num <= 0 || *ep != ’\0’) {

warnx("illegal number, -n argument -- %s",

optarg);

usage();

}

break;

case ’?’:

default:

usage();

}

argc -= optind;

argv += optind;

Space after keywords (if, while, for, return, switch). Two styles of braces (‘{’ and ‘}’) are allowed for

single line statements. Either they are used for all single statements, or they are used only where needed

for clarity. Usage within a function should be consistent. Forever loops are done with for’s, not while’s.

for (p = buf; *p != ’\0’; ++p)

; /* nothing */

for (;;)

stmt;

for (;;) {

z = a + really + long + statement + that + needs +

two + lines + gets + indented + four + spaces +

on + the + second + and + subsequent + lines;

}

for (;;) {

if (cond)

stmt;

}

if (val != NULL)

val = realloc(val, newsize);

Parts of a for loop may be left empty.

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

for (; cnt < 15; cnt++) {

stmt1;

stmt2;

}

A for loop may declare and initialize its counting variable.

for (int i = 0; i < 15; i++) {

stmt1;

}

Indentation is an 8 character tab. Second level indents are four spaces. If you have to wrap a long

statement, put the operator at the end of the line.

while (cnt < 20 && this_variable_name_is_too_long &&

ep != NULL)

z = a + really + long + statement + that + needs +

two + lines + gets + indented + four + spaces +

on + the + second + and + subsequent + lines;

Do not add whitespace at the end of a line, and only use tabs followed by spaces to form the indentation.

Do not use more spaces than a tab will produce and do not use spaces in front of tabs.

Closing and opening braces go on the same line as the else. Braces that are not necessary may be left

out.

if (test)

stmt;

else if (bar) {

stmt;

stmt;

} else

stmt;

No spaces after function names. Commas have a space after them. No spaces after ‘(’ or ‘[’ or

preceding ‘]’ or ‘)’ characters.

error = function(a1, a2);

if (error != 0)

exit(error);

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

Unary operators do not require spaces, binary operators do. Do not use parentheses unless they are

required for precedence or unless the statement is confusing without them. Remember that other people

may confuse easier than you. Do YOU understand the following?

a = b->c[0] + ~d == (e || f) || g && h ? i : j >> 1;

k = !(l & FLAGS);

Exits should be 0 on success, or 1 on failure.

exit(0); /*

* Avoid obvious comments such as

* "Exit 0 on success."

*/

}

The function type should be on a line by itself preceding the function. The opening brace of the function

body should be on a line by itself.

static char *

function(int a1, int a2, float fl, int a4, struct bar *bar)

{

When declaring variables in functions declare them sorted by size, then in alphabetical order; multiple

ones per line are okay. If a line overflows reuse the type keyword. Variables may be initialized where

declared especially when they are constant for the rest of the scope. Declarations may be in any block,

but must be placed before statements. Calls to complicated functions should be avoided when

initializing variables.

struct foo one, *two;

struct baz *three = bar_get_baz(bar);

double four;

int *five, six;

char *seven, eight, nine, ten, eleven, twelve;

four = my_complicated_function(a1, f1, a4);

Do not declare functions inside other functions; ANSI C says that such declarations have file scope

regardless of the nesting of the declaration. Hiding file declarations in what appears to be a local scope

is undesirable and will elicit complaints from a good compiler.

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

Casts and sizeof’s are not followed by a space. sizeof’s are written with parenthesis always. The

redundant parenthesis rules do not apply to sizeof(var) instances.

NULL is the preferred null pointer constant. Use NULL instead of (type *)0 or (type *)NULL in

contexts where the compiler knows the type, e.g., in assignments. Use (type *)NULL in other contexts,

in particular for all function args. (Casting is essential for variadic args and is necessary for other args if

the function prototype might not be in scope.) Test pointers against NULL, e.g., use:

(p = f()) == NULL

not:

!(p = f())

Do not use ! for tests unless it is a boolean, e.g., use:

if (*p == ’\0’)

not:

if (!*p)

Routines returning void * should not have their return values cast to any pointer type.

Values in return statements should be enclosed in parentheses.

Use err(3) or warn(3), do not roll your own.

if ((four = malloc(sizeof(struct foo))) == NULL)

err(1, (char *)NULL);

if ((six = (int *)overflow()) == NULL)

errx(1, "number overflowed");

return (eight);

}

Do not use K&R style declarations or definitions, they are obsolete and are forbidden in C23. Compilers

warn of their use and some treat them as an error by default. When converting K&R style definitions to

ANSI style, preserve any comments about parameters.

Long parameter lists are wrapped with a normal four space indent.

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

Variable numbers of arguments should look like this:

#include <stdarg.h>

void

vaf(const char *fmt, ...)

{

va_list ap;

va_start(ap, fmt);

STUFF;

va_end(ap);

/* No return needed for void functions. */

}

static void

usage(void)

{

/* Optional blank line goes here. */

Optionally, insert a blank line at the beginning of functions with no local variables. Older versions of

this style document required the blank line convention, so it is widely used in existing code.

Do not insert a blank line at the beginning of functions with local variables. Instead, these should have

local variable declarations first, followed by one blank line, followed by the first statement.

Use printf(3), not fputs(3), puts(3), putchar(3), whatever; it is faster and usually cleaner, not to mention

avoiding stupid bugs.

Usage statements should look like the manual pages SYNOPSIS. The usage statement should be

structured in the following order:

1. Options without operands come first, in alphabetical order, inside a single set of brackets (‘[’ and

‘]’).

2. Options with operands come next, also in alphabetical order, with each option and its argument

inside its own pair of brackets.

3. Required arguments (if any) are next, listed in the order they should be specified on the command

line.

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

4. Finally, any optional arguments should be listed, listed in the order they should be specified, and all

inside brackets.

A bar (‘|’) separates "either-or" options/arguments, and multiple options/arguments which are specified

together are placed in a single set of brackets.

"usage: f [-aDde] [-b b_arg] [-m m_arg] req1 req2 [opt1 [opt2]]\n"

"usage: f [-a | -b] [-c [-dEe] [-n number]]\n"

(void)fprintf(stderr, "usage: f [-ab]\n");

exit(1);

}

Note that the manual page options description should list the options in pure alphabetical order. That is,

without regard to whether an option takes arguments or not. The alphabetical ordering should take into

account the case ordering shown above.

New core kernel code should be reasonably compliant with the style guides. The guidelines for third-

party maintained modules and device drivers are more relaxed but at a minimum should be internally

consistent with their style.

Stylistic changes (including whitespace changes) are hard on the source repository and are to be avoided

without good reason. Code that is approximately FreeBSD KNF style compliant in the repository must

not diverge from compliance.

Whenever possible, code should be run through a code checker (e.g., various static analyzers or cc
-Wall) and produce minimal warnings.

New code should use _Static_assert() instead of the older CTASSERT().

FILES
/usr/src/tools/tools/editing/freebsd.el

An Emacs plugin to follow the FreeBSD style indentation rules.

/usr/src/tools/tools/editing/freebsd.vim

A Vim plugin to follow the FreeBSD style indentation rules.

SEE ALSO
indent(1), err(3), warn(3), style.Makefile(5), style.mdoc(5), style.lua(9)

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

HISTORY
This manual page is largely based on the src/admin/style/style file from the 4.4BSD-Lite2 release, with

occasional updates to reflect the current practice and desire of the FreeBSD project.

src/admin/style/style is a codification by the CSRG of the programming style of Ken Thompson and

Dennis Ritchie in Version 6 AT&T UNIX.

STYLE(9) FreeBSD Kernel Developer’s Manual STYLE(9)

FreeBSD 14.0-RELEASE-p11 July 28, 2022 FreeBSD 14.0-RELEASE-p11

