
NAME
sx, sx_init, sx_init_flags, sx_destroy, sx_slock, sx_xlock, sx_slock_sig, sx_xlock_sig, sx_try_slock,

sx_try_xlock, sx_sunlock, sx_xunlock, sx_unlock, sx_try_upgrade, sx_downgrade, sx_sleep,

sx_xholder, sx_xlocked, sx_assert, SX_SYSINIT, SX_SYSINIT_FLAGS - kernel shared/exclusive lock

SYNOPSIS
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/sx.h>

void

sx_init(struct sx *sx, const char *description);

void

sx_init_flags(struct sx *sx, const char *description, int opts);

void

sx_destroy(struct sx *sx);

void

sx_slock(struct sx *sx);

void

sx_xlock(struct sx *sx);

int

sx_slock_sig(struct sx *sx);

int

sx_xlock_sig(struct sx *sx);

int

sx_try_slock(struct sx *sx);

int

sx_try_xlock(struct sx *sx);

void

sx_sunlock(struct sx *sx);

SX(9) FreeBSD Kernel Developer’s Manual SX(9)

FreeBSD 14.0-RELEASE-p11 November 11, 2017 FreeBSD 14.0-RELEASE-p11



void

sx_xunlock(struct sx *sx);

void

sx_unlock(struct sx *sx);

int

sx_try_upgrade(struct sx *sx);

void

sx_downgrade(struct sx *sx);

int

sx_sleep(void *chan, struct sx *sx, int priority, const char *wmesg, int timo);

struct thread *

sx_xholder(struct sx *sx);

int

sx_xlocked(const struct sx *sx);

options INVARIANTS
options INVARIANT_SUPPORT
void

sx_assert(const struct sx *sx, int what);

#include <sys/kernel.h>

SX_SYSINIT(name, struct sx *sx, const char *desc);

SX_SYSINIT_FLAGS(name, struct sx *sx, const char *desc, int flags);

DESCRIPTION
Shared/exclusive locks are used to protect data that are read far more often than they are written.

Shared/exclusive locks do not implement priority propagation like mutexes and reader/writer locks to

prevent priority inversions, so shared/exclusive locks should be used prudently.

Shared/exclusive locks are created with either sx_init() or sx_init_flags() where sx is a pointer to space

for a struct sx, and description is a pointer to a null-terminated character string that describes the

shared/exclusive lock. The opts argument to sx_init_flags() specifies a set of optional flags to alter the

SX(9) FreeBSD Kernel Developer’s Manual SX(9)

FreeBSD 14.0-RELEASE-p11 November 11, 2017 FreeBSD 14.0-RELEASE-p11



behavior of sx. It contains one or more of the following flags:

SX_DUPOK Witness should not log messages about duplicate locks being acquired.

SX_NOWITNESS Instruct witness(4) to ignore this lock.

SX_NOPROFILE Do not profile this lock.

SX_RECURSE Allow threads to recursively acquire exclusive locks for sx.

SX_QUIET Do not log any operations for this lock via ktr(4).

SX_NEW If the kernel has been compiled with options INVARIANTS, sx_init() will assert

that the sx has not been initialized multiple times without intervening calls to

sx_destroy() unless this option is specified.

Shared/exclusive locks are destroyed with sx_destroy(). The lock sx must not be locked by any thread

when it is destroyed.

Threads acquire and release a shared lock by calling sx_slock(), sx_slock_sig() or sx_try_slock() and

sx_sunlock() or sx_unlock(). Threads acquire and release an exclusive lock by calling sx_xlock(),

sx_xlock_sig() or sx_try_xlock() and sx_xunlock() or sx_unlock(). A thread can attempt to upgrade a

currently held shared lock to an exclusive lock by calling sx_try_upgrade(). A thread that has an

exclusive lock can downgrade it to a shared lock by calling sx_downgrade().

sx_try_slock() and sx_try_xlock() will return 0 if the shared/exclusive lock cannot be acquired

immediately; otherwise the shared/exclusive lock will be acquired and a non-zero value will be returned.

sx_try_upgrade() will return 0 if the shared lock cannot be upgraded to an exclusive lock immediately;

otherwise the exclusive lock will be acquired and a non-zero value will be returned.

sx_slock_sig() and sx_xlock_sig() do the same as their normal versions but performing an interruptible

sleep. They return a non-zero value if the sleep has been interrupted by a signal or an interrupt,

otherwise 0.

A thread can atomically release a shared/exclusive lock while waiting for an event by calling sx_sleep().

For more details on the parameters to this function, see sleep(9).

When compiled with options INVARIANTS and options INVARIANT_SUPPORT, the sx_assert()
function tests sx for the assertions specified in what, and panics if they are not met. One of the

SX(9) FreeBSD Kernel Developer’s Manual SX(9)

FreeBSD 14.0-RELEASE-p11 November 11, 2017 FreeBSD 14.0-RELEASE-p11



following assertions must be specified:

SA_LOCKED Assert that the current thread has either a shared or an exclusive lock on the sx lock

pointed to by the first argument.

SA_SLOCKED Assert that the current thread has a shared lock on the sx lock pointed to by the first

argument.

SA_XLOCKED Assert that the current thread has an exclusive lock on the sx lock pointed to by the

first argument.

SA_UNLOCKED Assert that the current thread has no lock on the sx lock pointed to by the first

argument.

In addition, one of the following optional assertions may be included with either an SA_LOCKED,

SA_SLOCKED, or SA_XLOCKED assertion:

SA_RECURSED Assert that the current thread has a recursed lock on sx.

SA_NOTRECURSED Assert that the current thread does not have a recursed lock on sx.

sx_xholder() will return a pointer to the thread which currently holds an exclusive lock on sx. If no

thread holds an exclusive lock on sx, then NULL is returned instead.

sx_xlocked() will return non-zero if the current thread holds the exclusive lock; otherwise, it will return

zero.

For ease of programming, sx_unlock() is provided as a macro frontend to the respective functions,

sx_sunlock() and sx_xunlock(). Algorithms that are aware of what state the lock is in should use either

of the two specific functions for a minor performance benefit.

The SX_SYSINIT() macro is used to generate a call to the sx_sysinit() routine at system startup in order

to initialize a given sx lock. The parameters are the same as sx_init() but with an additional argument,

name, that is used in generating unique variable names for the related structures associated with the lock

and the sysinit routine. The SX_SYSINIT_FLAGS() macro can similarly be used to initialize a given sx

lock using sx_init_flags().

A thread may not hold both a shared lock and an exclusive lock on the same lock simultaneously;

attempting to do so will result in deadlock.

SX(9) FreeBSD Kernel Developer’s Manual SX(9)

FreeBSD 14.0-RELEASE-p11 November 11, 2017 FreeBSD 14.0-RELEASE-p11



CONTEXT
A thread may hold a shared or exclusive lock on an sx lock while sleeping. As a result, an sx lock may

not be acquired while holding a mutex. Otherwise, if one thread slept while holding an sx lock while

another thread blocked on the same sx lock after acquiring a mutex, then the second thread would

effectively end up sleeping while holding a mutex, which is not allowed.

SEE ALSO
lock(9), locking(9), mutex(9), panic(9), rwlock(9), sema(9)

BUGS
A kernel without WITNESS cannot assert whether the current thread does or does not hold a shared

lock. SA_LOCKED and SA_SLOCKED can only assert that any thread holds a shared lock. They

cannot ensure that the current thread holds a shared lock. Further, SA_UNLOCKED can only assert that

the current thread does not hold an exclusive lock.

SX(9) FreeBSD Kernel Developer’s Manual SX(9)

FreeBSD 14.0-RELEASE-p11 November 11, 2017 FreeBSD 14.0-RELEASE-p11


