
NAME
syncache, syncookies - sysctl(8) MIBs for controlling TCP SYN caching

SYNOPSIS
sysctl net.inet.tcp.syncookies
sysctl net.inet.tcp.syncookies_only

sysctl net.inet.tcp.syncache.hashsize
sysctl net.inet.tcp.syncache.bucketlimit
sysctl net.inet.tcp.syncache.cachelimit
sysctl net.inet.tcp.syncache.rexmtlimit
sysctl net.inet.tcp.syncache.count
sysctl net.inet.tcp.syncache.see_other

DESCRIPTION
The syncache sysctl(8) MIB is used to control the TCP SYN caching in the system, which is intended to

handle SYN flood Denial of Service attacks.

When a TCP SYN segment is received on a port corresponding to a listen socket, an entry is made in the

syncache, and a SYN,ACK segment is returned to the peer. The syncache entry holds the TCP options

from the initial SYN, enough state to perform a SYN,ACK retransmission, and takes up less space than

a TCP control block endpoint. An incoming segment which contains an ACK for the SYN,ACK and

matches a syncache entry will cause the system to create a TCP control block with the options stored in

the syncache entry, which is then released.

The syncache protects the system from SYN flood DoS attacks by minimizing the amount of state kept

on the server, and by limiting the overall size of the syncache.

Syncookies provides a way to virtually expand the size of the syncache by keeping state regarding the

initial SYN in the network. Enabling syncookies sends a cryptographic value in the SYN,ACK reply to

the client machine, which is then returned in the client’s ACK. If the corresponding entry is not found in

the syncache, but the value passes specific security checks, the connection will be accepted. This is only

used if the syncache is unable to handle the volume of incoming connections, and a prior entry has been

evicted from the cache.

Syncookies have a certain number of disadvantages that a paranoid administrator may wish to take note

of. Since the TCP options from the initial SYN are not saved, they are not applied to the connection,

precluding use of features like window scale, timestamps, or exact MSS sizing. As the returning ACK

establishes the connection, it may be possible for an attacker to ACK flood a machine in an attempt to

create a connection. While steps have been taken to mitigate this risk, this may provide a way to bypass

SYNCACHE(4) FreeBSD Kernel Interfaces Manual SYNCACHE(4)

FreeBSD 14.0-RELEASE-p11 April 12, 2021 FreeBSD 14.0-RELEASE-p11



firewalls which filter incoming segments with the SYN bit set.

To disable the syncache and run only with syncookies, set net.inet.tcp.syncookies_only to 1.

The syncache implements a number of variables in the net.inet.tcp.syncache branch of the sysctl(3)

MIB. Several of these may be tuned by setting the corresponding variable in the loader(8).

hashsize Size of the syncache hash table, must be a power of 2. Read-only, tunable via loader(8).

bucketlimit Limit on the number of entries permitted in each bucket of the hash table. This should be

left at a low value to minimize search time. Read-only, tunable via loader(8).

cachelimit Limit on the total number of entries in the syncache. Defaults to (hashsize x bucketlimit),

may be set lower to minimize memory consumption. Read-only, tunable via loader(8).

rexmtlimit Maximum number of times a SYN,ACK is retransmitted before being discarded. The

default of 3 retransmits corresponds to a 45 second timeout, this value may be increased

depending on the RTT to client machines. Tunable via sysctl(3).

count Number of entries present in the syncache (read-only).

see_other If set to true value, all syncache entries will be visible via net.inet.tcp.pcblist sysctl, or via

netstat(1), ignoring all of security(7) UID/GID, jail(2) and mac(4) checks. If turned off, the

visibility checks are enforced. However, extra ucred(9) referencing is required on every

incoming SYN packet processed. The default is off.

Statistics on the performance of the syncache may be obtained via netstat(1), which provides the

following counts:

syncache entries added

Entries successfully inserted in the syncache.

retransmitted SYN,ACK retransmissions due to a timeout expiring.

dupsyn Incoming SYN segment matching an existing entry.

dropped SYNs dropped because SYN,ACK could not be sent.

completed Successfully completed connections.

SYNCACHE(4) FreeBSD Kernel Interfaces Manual SYNCACHE(4)

FreeBSD 14.0-RELEASE-p11 April 12, 2021 FreeBSD 14.0-RELEASE-p11



bucket overflow Entries dropped for exceeding per-bucket size.

cache overflow Entries dropped for exceeding overall cache size.

reset RST segment received.

stale Entries dropped due to maximum retransmissions or listen socket disappearance.

aborted New socket allocation failures.

badack Entries dropped due to bad ACK reply.

unreach Entries dropped due to ICMP unreachable messages.

zone failures Failures to allocate new syncache entry.

cookies received Connections created from segment containing ACK.

SEE ALSO
netstat(1), jail(2), mac(4), tcp(4), security(7), loader(8), sysctl(8), ucred(9)

HISTORY
The existing syncache implementation first appeared in FreeBSD 4.5. The original concept of a

syncache originally appeared in BSD/OS, and was later modified by NetBSD, then further extended

here.

AUTHORS
The syncache code and manual page were written by Jonathan Lemon <jlemon@FreeBSD.org>.

SYNCACHE(4) FreeBSD Kernel Interfaces Manual SYNCACHE(4)

FreeBSD 14.0-RELEASE-p11 April 12, 2021 FreeBSD 14.0-RELEASE-p11


