
NAME
sysctl_add_oid, sysctl_move_oid, sysctl_remove_oid, sysctl_remove_name - runtime sysctl tree

manipulation

SYNOPSIS
#include <sys/types.h>
#include <sys/sysctl.h>

struct sysctl_oid *

sysctl_add_oid(struct sysctl_ctx_list *ctx, struct sysctl_oid_list *parent, int number, const char *name,

int kind, void *arg1, intmax_t arg2, int (*handler) (SYSCTL_HANDLER_ARGS),

const char *format, const char *descr, const char *label);

int

sysctl_move_oid(struct sysctl_oid *oidp, struct sysctl_oid_list *parent);

int

sysctl_remove_oid(struct sysctl_oid *oidp, int del, int recurse);

int

sysctl_remove_name(struct sysctl_oid *oidp, const char *name, int del, int recurse);

DESCRIPTION
These functions provide the interface for creating and deleting sysctl OIDs at runtime for example

during the lifetime of a module. The wrapper macros defined by sysctl(9) are recommended when

creating new OIDs. sysctl_add_oid() should not be called directly from the code.

Dynamic OIDs of type CTLTYPE_NODE are reusable so that several code sections can create and

delete them, but in reality they are allocated and freed based on their reference count. As a consequence,

it is possible for two or more code sections to create partially overlapping trees that they both can use. It

is not possible to create overlapping leaves, nor to create different child types with the same name and

parent.

The sysctl_add_oid() function creates a raw OID of any type and connects it to its parent node, if any. If

the OID is successfully created, the function returns a pointer to it else it returns NULL. Many of the

arguments for sysctl_add_oid() are common to the wrapper macros defined by sysctl(9).

The sysctl_move_oid() function reparents an existing OID. The OID is assigned a new number as if it

had been created with number set to OID_AUTO.

SYSCTL_ADD_OID(9) FreeBSD Kernel Developer’s Manual SYSCTL_ADD_OID(9)

FreeBSD 14.0-RELEASE-p6 December 13, 2016 FreeBSD 14.0-RELEASE-p6



The sysctl_remove_oid() function removes a dynamically created OID from the tree and optionally

freeing its resources. It takes the following arguments:

oidp A pointer to the dynamic OID to be removed. If the OID is not dynamic, or the pointer is

NULL, the function returns EINVAL.

del If non-zero, sysctl_remove_oid() will try to free the OID’s resources when the reference count

of the OID becomes zero. However, if del is set to 0, the routine will only deregister the OID

from the tree, without freeing its resources. This behaviour is useful when the caller expects to

rollback (possibly partially failed) deletion of many OIDs later.

recurse If non-zero, attempt to remove the node and all its children. If recurse is set to 0, any attempt to

remove a node that contains any children will result in a ENOTEMPTY error. WARNING: use

recursive deletion with extreme caution! Normally it should not be needed if contexts are used.

Contexts take care of tracking inter-dependencies between users of the tree. However, in some

extreme cases it might be necessary to remove part of the subtree no matter how it was created,

in order to free some other resources. Be aware, though, that this may result in a system

panic(9) if other code sections continue to use removed subtrees.

The sysctl_remove_name() function looks up the child node matching the name argument and then

invokes the sysctl_remove_oid() function on that node, passing along the del and recurse arguments. If

a node having the specified name does not exist an error code of ENOENT is returned. Else the error

code from sysctl_remove_oid() is returned.

In most cases the programmer should use contexts, as described in sysctl_ctx_init(9), to keep track of

created OIDs, and to delete them later in orderly fashion.

SEE ALSO
sysctl(8), sysctl(9), sysctl_ctx_free(9), sysctl_ctx_init(9)

HISTORY
These functions first appeared in FreeBSD 4.2.

AUTHORS
Andrzej Bialecki <abial@FreeBSD.org>

BUGS
Sharing nodes between many code sections causes interdependencies that sometimes may lock the

resources. For example, if module A hooks up a subtree to an OID created by module B, module B will

be unable to delete that OID. These issues are handled properly by sysctl contexts.

SYSCTL_ADD_OID(9) FreeBSD Kernel Developer’s Manual SYSCTL_ADD_OID(9)

FreeBSD 14.0-RELEASE-p6 December 13, 2016 FreeBSD 14.0-RELEASE-p6



Many operations on the tree involve traversing linked lists. For this reason, OID creation and removal is

relatively costly.

SYSCTL_ADD_OID(9) FreeBSD Kernel Developer’s Manual SYSCTL_ADD_OID(9)

FreeBSD 14.0-RELEASE-p6 December 13, 2016 FreeBSD 14.0-RELEASE-p6


