
NAME
taskqueue - asynchronous task execution

SYNOPSIS
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>

typedef void (*task_fn_t)(void *context, int pending);

typedef void (*taskqueue_enqueue_fn)(void *context);

struct task {

STAILQ_ENTRY(task) ta_link; /* link for queue */

u_short ta_pending; /* count times queued */

u_short ta_priority; /* priority of task in queue */

task_fn_t ta_func; /* task handler */

void *ta_context; /* argument for handler */

};

enum taskqueue_callback_type {

TASKQUEUE_CALLBACK_TYPE_INIT,

TASKQUEUE_CALLBACK_TYPE_SHUTDOWN,

};

typedef void (*taskqueue_callback_fn)(void *context);

struct timeout_task;

struct taskqueue *

taskqueue_create(const char *name, int mflags, taskqueue_enqueue_fn enqueue, void *context);

struct taskqueue *

taskqueue_create_fast(const char *name, int mflags, taskqueue_enqueue_fn enqueue, void *context);

int

taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, const char *name, ...);

int

TASKQUEUE(9) FreeBSD Kernel Developer’s Manual TASKQUEUE(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2022 FreeBSD 14.0-RELEASE-p6

taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri, cpuset_t *mask,

const char *name, ...);

int

taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri, struct proc *proc,

const char *name, ...);

void

taskqueue_set_callback(struct taskqueue *queue, enum taskqueue_callback_type cb_type,

taskqueue_callback_fn callback, void *context);

void

taskqueue_free(struct taskqueue *queue);

int

taskqueue_enqueue(struct taskqueue *queue, struct task *task);

int

taskqueue_enqueue_flags(struct taskqueue *queue, struct task *task, int flags);

int

taskqueue_enqueue_timeout(struct taskqueue *queue, struct timeout_task *timeout_task, int ticks);

int

taskqueue_enqueue_timeout_sbt(struct taskqueue *queue, struct timeout_task *timeout_task,

sbintime_t sbt, sbintime_t pr, int flags);

int

taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp);

int

taskqueue_cancel_timeout(struct taskqueue *queue, struct timeout_task *timeout_task, u_int *pendp);

void

taskqueue_drain(struct taskqueue *queue, struct task *task);

void

taskqueue_drain_timeout(struct taskqueue *queue, struct timeout_task *timeout_task);

void

TASKQUEUE(9) FreeBSD Kernel Developer’s Manual TASKQUEUE(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2022 FreeBSD 14.0-RELEASE-p6

taskqueue_drain_all(struct taskqueue *queue);

void

taskqueue_quiesce(struct taskqueue *queue);

void

taskqueue_block(struct taskqueue *queue);

void

taskqueue_unblock(struct taskqueue *queue);

int

taskqueue_member(struct taskqueue *queue, struct thread *td);

void

taskqueue_run(struct taskqueue *queue);

TASK_INIT(struct task *task, int priority, task_fn_t func, void *context);

TASK_INITIALIZER(int priority, task_fn_t func, void *context);

TASKQUEUE_DECLARE(name);

TASKQUEUE_DEFINE(name, taskqueue_enqueue_fn enqueue, void *context, init);

TASKQUEUE_FAST_DEFINE(name, taskqueue_enqueue_fn enqueue, void *context, init);

TASKQUEUE_DEFINE_THREAD(name);

TASKQUEUE_FAST_DEFINE_THREAD(name);

TIMEOUT_TASK_INIT(struct taskqueue *queue, struct timeout_task *timeout_task, int priority,

task_fn_t func, void *context);

DESCRIPTION
These functions provide a simple interface for asynchronous execution of code.

The function taskqueue_create() is used to create new queues. The arguments to taskqueue_create()

include a name that should be unique, a set of malloc(9) flags that specify whether the call to malloc() is

allowed to sleep, a function that is called from taskqueue_enqueue() when a task is added to the queue,

TASKQUEUE(9) FreeBSD Kernel Developer’s Manual TASKQUEUE(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2022 FreeBSD 14.0-RELEASE-p6

and a pointer to the memory location where the identity of the thread that services the queue is recorded.

The function called from taskqueue_enqueue() must arrange for the queue to be processed (for instance

by scheduling a software interrupt or waking a kernel thread). The memory location where the thread

identity is recorded is used to signal the service thread(s) to terminate--when this value is set to zero and

the thread is signaled it will terminate. If the queue is intended for use in fast interrupt handlers

taskqueue_create_fast() should be used in place of taskqueue_create().

The function taskqueue_free() should be used to free the memory used by the queue. Any tasks that are

on the queue will be executed at this time after which the thread servicing the queue will be signaled that

it should exit.

Once a taskqueue has been created, its threads should be started using taskqueue_start_threads(),

taskqueue_start_threads_cpuset() or taskqueue_start_threads_in_proc().

taskqueue_start_threads_cpuset() takes a cpuset argument which will cause the threads which are started

for the taskqueue to be restricted to run on the given CPUs. taskqueue_start_threads_in_proc() takes a

proc argument which will cause the threads which are started for the taskqueue to be assigned to the

given kernel process. Callbacks may optionally be registered using taskqueue_set_callback().

Currently, callbacks may be registered for the following purposes:

TASKQUEUE_CALLBACK_TYPE_INIT This callback is called by every thread in the

taskqueue, before it executes any tasks. This

callback must be set before the taskqueue’s

threads are started.

TASKQUEUE_CALLBACK_TYPE_SHUTDOWN This callback is called by every thread in the

taskqueue, after it executes its last task. This

callback will always be called before the

taskqueue structure is reclaimed.

To add a task to the list of tasks queued on a taskqueue, call taskqueue_enqueue() with pointers to the

queue and task. If the task’s ta_pending field is non-zero, then it is simply incremented to reflect the

number of times the task was enqueued, up to a cap of USHRT_MAX. Otherwise, the task is added to

the list before the first task which has a lower ta_priority value or at the end of the list if no tasks have a

lower priority. Enqueueing a task does not perform any memory allocation which makes it suitable for

calling from an interrupt handler. This function will return EPIPE if the queue is being freed.

When a task is executed, first it is removed from the queue, the value of ta_pending is recorded and then

the field is zeroed. The function ta_func from the task structure is called with the value of the field

ta_context as its first argument and the value of ta_pending as its second argument. After the function

ta_func returns, wakeup(9) is called on the task pointer passed to taskqueue_enqueue().

TASKQUEUE(9) FreeBSD Kernel Developer’s Manual TASKQUEUE(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2022 FreeBSD 14.0-RELEASE-p6

The taskqueue_enqueue_flags() accepts an extra flags parameter which specifies a set of optional flags

to alter the behavior of taskqueue_enqueue(). It contains one or more of the following flags:

TASKQUEUE_FAIL_IF_PENDING taskqueue_enqueue_flags() fails if the task is already

scheduled for execution. EEXIST is returned and the

ta_pending counter value remains unchanged.

TASKQUEUE_FAIL_IF_CANCELING taskqueue_enqueue_flags() fails if the task is in the canceling

state and ECANCELED is returned.

The taskqueue_enqueue_timeout() function is used to schedule the enqueue after the specified number

of ticks. The taskqueue_enqueue_timeout_sbt() function provides finer control over the scheduling

based on sbt, pr, and flags, as detailed in callout(9). If the ticks argument is negative, the already

scheduled enqueueing is not re-scheduled. Otherwise, the task is scheduled for enqueueing in the future,

after the absolute value of ticks is passed. This function returns -1 if the task is being drained.

Otherwise, the number of pending calls is returned.

The taskqueue_cancel() function is used to cancel a task. The ta_pending count is cleared, and the old

value returned in the reference parameter pendp, if it is non-NULL. If the task is currently running,

EBUSY is returned, otherwise 0. To implement a blocking taskqueue_cancel() that waits for a running

task to finish, it could look like:

while (taskqueue_cancel(tq, task, NULL) != 0)

taskqueue_drain(tq, task);

Note that, as with taskqueue_drain(), the caller is responsible for ensuring that the task is not re-

enqueued after being canceled.

Similarly, the taskqueue_cancel_timeout() function is used to cancel the scheduled task execution.

The taskqueue_drain() function is used to wait for the task to finish, and the taskqueue_drain_timeout()
function is used to wait for the scheduled task to finish. There is no guarantee that the task will not be

enqueued after call to taskqueue_drain(). If the caller wants to put the task into a known state, then

before calling taskqueue_drain() the caller should use out-of-band means to ensure that the task would

not be enqueued. For example, if the task is enqueued by an interrupt filter, then the interrupt could be

disabled.

The taskqueue_drain_all() function is used to wait for all pending and running tasks that are enqueued

on the taskqueue to finish. Tasks posted to the taskqueue after taskqueue_drain_all() begins processing,

including pending enqueues scheduled by a previous call to taskqueue_enqueue_timeout(), do not

TASKQUEUE(9) FreeBSD Kernel Developer’s Manual TASKQUEUE(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2022 FreeBSD 14.0-RELEASE-p6

extend the wait time of taskqueue_drain_all() and may complete after taskqueue_drain_all() returns.

The taskqueue_quiesce() function is used to wait for the queue to become empty and for all running

tasks to finish. To avoid blocking indefinitely, the caller must ensure by some mechanism that tasks will

eventually stop being posted to the queue.

The taskqueue_block() function blocks the taskqueue. It prevents any enqueued but not running tasks

from being executed. Future calls to taskqueue_enqueue() will enqueue tasks, but the tasks will not be

run until taskqueue_unblock() is called. Please note that taskqueue_block() does not wait for any

currently running tasks to finish. Thus, the taskqueue_block() does not provide a guarantee that

taskqueue_run() is not running after taskqueue_block() returns, but it does provide a guarantee that

taskqueue_run() will not be called again until taskqueue_unblock() is called. If the caller requires a

guarantee that taskqueue_run() is not running, then this must be arranged by the caller. Note that if

taskqueue_drain() is called on a task that is enqueued on a taskqueue that is blocked by

taskqueue_block(), then taskqueue_drain() can not return until the taskqueue is unblocked. This can

result in a deadlock if the thread blocked in taskqueue_drain() is the thread that is supposed to call

taskqueue_unblock(). Thus, use of taskqueue_drain() after taskqueue_block() is discouraged, because

the state of the task can not be known in advance. The same caveat applies to taskqueue_drain_all().

The taskqueue_unblock() function unblocks the previously blocked taskqueue. All enqueued tasks can

be run after this call.

The taskqueue_member() function returns 1 if the given thread td is part of the given taskqueue queue

and 0 otherwise.

The taskqueue_run() function will run all pending tasks in the specified queue. Normally this function is

only used internally.

A convenience macro, TASK_INIT(task, priority, func, context) is provided to initialise a task structure.

The TASK_INITIALIZER() macro generates an initializer for a task structure. A macro

TIMEOUT_TASK_INIT(queue, timeout_task, priority, func, context) initializes the timeout_task

structure. The values of priority, func, and context are simply copied into the task structure fields and

the ta_pending field is cleared.

Five macros TASKQUEUE_DECLARE(name), TASKQUEUE_DEFINE(name, enqueue, context, init),

TASKQUEUE_FAST_DEFINE(name, enqueue, context, init), and

TASKQUEUE_DEFINE_THREAD(name) TASKQUEUE_FAST_DEFINE_THREAD(name) are used

to declare a reference to a global queue, to define the implementation of the queue, and declare a queue

that uses its own thread. The TASKQUEUE_DEFINE() macro arranges to call taskqueue_create() with

the values of its name, enqueue and context arguments during system initialisation. After calling

taskqueue_create(), the init argument to the macro is executed as a C statement, allowing any further

TASKQUEUE(9) FreeBSD Kernel Developer’s Manual TASKQUEUE(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2022 FreeBSD 14.0-RELEASE-p6

initialisation to be performed (such as registering an interrupt handler, etc.).

The TASKQUEUE_DEFINE_THREAD() macro defines a new taskqueue with its own kernel thread to

serve tasks. The variable struct taskqueue *taskqueue_name is used to enqueue tasks onto the queue.

TASKQUEUE_FAST_DEFINE() and TASKQUEUE_FAST_DEFINE_THREAD() act just like

TASKQUEUE_DEFINE() and TASKQUEUE_DEFINE_THREAD() respectively but taskqueue is

created with taskqueue_create_fast().

Predefined Task Queues
The system provides four global taskqueues, taskqueue_fast, taskqueue_swi, taskqueue_swi_giant, and

taskqueue_thread. The taskqueue_fast queue is for swi handlers dispatched from fast interrupt handlers,

where sleep mutexes cannot be used. The swi taskqueues are run via a software interrupt mechanism.

The taskqueue_swi queue runs without the protection of the Giant kernel lock, and the

taskqueue_swi_giant queue runs with the protection of the Giant kernel lock. The thread taskqueue

taskqueue_thread runs in a kernel thread context, and tasks run from this thread do not run under the

Giant kernel lock. If the caller wants to run under Giant, he should explicitly acquire and release Giant

in his taskqueue handler routine.

To use these queues, call taskqueue_enqueue() with the value of the global taskqueue variable for the

queue you wish to use.

The software interrupt queues can be used, for instance, for implementing interrupt handlers which must

perform a significant amount of processing in the handler. The hardware interrupt handler would

perform minimal processing of the interrupt and then enqueue a task to finish the work. This reduces to

a minimum the amount of time spent with interrupts disabled.

The thread queue can be used, for instance, by interrupt level routines that need to call kernel functions

that do things that can only be done from a thread context. (e.g., call malloc with the M_WAITOK

flag.)

Note that tasks queued on shared taskqueues such as taskqueue_swi may be delayed an indeterminate

amount of time before execution. If queueing delays cannot be tolerated then a private taskqueue should

be created with a dedicated processing thread.

SEE ALSO
callout(9), ithread(9), kthread(9), swi(9)

HISTORY
This interface first appeared in FreeBSD 5.0. There is a similar facility called work_queue in the Linux

TASKQUEUE(9) FreeBSD Kernel Developer’s Manual TASKQUEUE(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2022 FreeBSD 14.0-RELEASE-p6

kernel.

AUTHORS
This manual page was written by Doug Rabson.

TASKQUEUE(9) FreeBSD Kernel Developer’s Manual TASKQUEUE(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2022 FreeBSD 14.0-RELEASE-p6

