NAME

tcp_bbr - TCP Bottleneck Bandwidth and Round-Trip Time Algorithm

SYNOPSIS

To load the driver as a module at boot time, place the following line in loader.conf(5):

tcp_bbr_load="YES"

To enable the TCP stack you must place the following line in the sysctl.conf(5):

net.inet.tcp.functions_default=bbr

DESCRIPTION

Bottleneck bandwidth and round-trip time (BBR) is a congestion control algorithm which seeks high throughput with a small queue by probing BW and RTT. It is a round-up redesign of congestion control, which is not loss-based, delay-based, ECN-based or AIMD-based.

The core design of BBR is about creating a model graph of the network path by estimating the maximum BW and minimum RTT on each ACK.

MIB Variables

The algorithm exposes the following scopes in the *net.inet.tcp.bbr* branch of the sysctl(3) MIB:

cwnd	Cwnd controls, for example "target cwnd rtt measurement" and "BBR initial window".
measure	Measurement controls.
pacing	Connection pacing controls.
policer	Policer controls, for example "false detection threshold" and "loss threshold".
probertt	Probe RTT controls.
startup	Startup controls.
states	State controls.
timeout	Time out controls.

Besides the variables within the above scopes the following variables are also exposed in the *net.inet.tcp.bbr* branch:

clrlost	Clear lost counters.
software_pacing	Total number of software paced flows.
hdwr_pacing	Total number of hardware paced flows.
enob_no_hdwr_pa	tring Total number of enobufs for non-hardware paced flows.
enob_hdwr_pacing	
	Total number of enobufs for hardware paced flows.
rtt_tlp_thresh	What divisor for TLP rtt/retran will be added (1=rtt, $2=1/2$ rtt etc).
reorder_fade	Does reorder detection fade, if so how many ms (0 means never).
reorder_thresh	What factor for rack will be added when seeing reordering (shift right).
bb_verbose	Should BBR black box logging be verbose.
sblklimit	When do we start ignoring small sack blocks.
resend_use_tso	Can resends use TSO?
data_after_close	Do we hold off sending a RST until all pending data is ack'd.
kill_paceout	When we hit this many errors in a row, kill the session?
error_paceout	When we hit an error what is the min to pace out in usec's?
cheat_rxt	Do we burst 1ms between sends on retransmissions (like rack)?
minrto	Minimum RTO in ms.

SEE ALSO

cc_chd(4), cc_cubic(4), cc_hd(4), cc_htcp(4), cc_newreno(4), cc_vegas(4), h_ertt(4), mod_cc(4), tcp(4), tcp_rack(4), mod_cc(9)

Neal Cardwell, Yuchung Cheng, Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson, "BBR: Congestion-Based Congestion Control", *ACM Queue*, *Vol. 14*, September / October 2016.

Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer, Fabien Geyer, and Georg Carle, "Towards a Deeper Understanding of TCP BBR Congestion Control", *IFIP Networking 2018*, http://www.net.in.tum.de/fileadmin/bibtex/publications/papers/IFIP-Networking-2018-TCP-BBR.pdf, May 2018.

HISTORY

The tcp_bbr congestion control module first appeared in FreeBSD 13.0.

AUTHORS

The **tcp_bbr** congestion control module was written by Randall Stewart *<rrs@FreeBSD.org>* and sponsored by Netflix, Inc. This manual page was written by Gordon Bergling *<gbe@FreeBSD.org>*.