
NAME
termcap - terminal capability data base

SYNOPSIS
termcap

DESCRIPTION
The termcap file is a data base describing terminals, used, for example, by vi(1) and ncurses(3).

Terminals are described in termcap by giving a set of capabilities that they have and by describing how

operations are performed. Padding requirements and initialization sequences are included in termcap.

Entries in termcap consist of a number of ‘:’-separated fields. The first entry for each terminal gives the

names that are known for the terminal, separated by ‘|’ characters. The first name given is the most

common abbreviation for the terminal. The last name given should be a long name fully identifying the

terminal, and all others are understood as synonyms for the terminal name. All names but the last

should be in lower case and contain no blanks; the last name may well contain upper case characters and

blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the following conventions.

The particular piece of hardware making up the terminal should have a root name chosen, thus "hp2621"

This name should not contain hyphens. Modes that the hardware can be in or user preferences should be

indicated by appending a hyphen and an indicator of the mode. Therefore, a "vt100" in 132-column

mode would be "vt100-w". The following suffixes should be used where possible:

Suffix Meaning Example

-w Wide mode (more than 80 columns) vt100-w

-am With automatic margins (usually default) vt100-am

-nam Without automatic margins vt100-nam

-n Number of lines on screen aaa-60

-na No arrow keys (leave them in local) concept100-na

-np Number of pages of memory concept100-4p

-rv Reverse video concept100-rv

CAPABILITIES
The description field attempts to convey the semantics of the capability. You may find some codes in

the description field:

(P) indicates that padding may be specified.

#[1-9] in the description field indicates that the string is passed through tparm(3) or tgoto(3) with parms

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

as given (#i).

(P*) indicates that padding may vary in proportion to the number of lines affected.

(#i) indicates the ith parameter.

These are the boolean capabilities:

Boolean TCap Description
Variables Code
auto_left_margin bw cursor_left wraps from column 0 to last

column

auto_right_margin am terminal has automatic margins

no_esc_ctlc xb beehive (f1=escape, f2=ctrl C)

ceol_standout_glitch xs standout not erased by overwriting (hp)

eat_newline_glitch xn newline ignored after 80 cols (concept)

erase_overstrike eo can erase overstrikes with a blank

generic_type gn generic line type

hard_copy hc hardcopy terminal

has_meta_key km Has a meta key, sets msb high

has_status_line hs has extra status line

insert_null_glitch in insert mode distinguishes nulls

memory_above da display may be retained above the screen

memory_below db display may be retained below the screen

move_insert_mode mi safe to move while in insert mode

move_standout_mode ms safe to move while in standout mode

over_strike os terminal can overstrike

status_line_esc_ok es escape can be used on the status line

dest_tabs_magic_smso xt tabs destructive, magic so char (t1061)

tilde_glitch hz cannot print ~’s (hazeltine)

transparent_underline ul underline character overstrikes

xon_xoff xo terminal uses xon/xoff handshaking

needs_xon_xoff nx padding will not work, xon/xoff required

prtr_silent 5i printer will not echo on screen

hard_cursor HC cursor is hard to see

non_rev_rmcup NR enter_ca_mode does not reverse exit_ca_mode

no_pad_char NP pad character does not exist

non_dest_scroll_region ND scrolling region is non-destructive

can_change cc terminal can re-define existing colors

back_color_erase ut screen erased with background color

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

hue_lightness_saturation hl terminal uses only HLS color

notation (tektronix)

col_addr_glitch YA only positive motion for column address and

micro_column_address caps

cr_cancels_micro_mode YB using cr turns off micro mode

has_print_wheel YC printer needs operator to change character

set

row_addr_glitch YD only positive motion for row_address and

micro_row_address caps

semi_auto_right_margin YE printing in last column causes cr

cpi_changes_res YF changing character pitch changes resolution

lpi_changes_res YG changing line pitch changes resolution

These are the numeric capabilities:

Numeric TCap Description
Variables Code
columns co number of columns in aline

init_tabs it tabs initially every # spaces

lines li number of lines on screen or page

lines_of_memory lm lines of memory if > line. 0 => varies

magic_cookie_glitch sg number of blank chars left by

enter_standout_mode or exit_standout_mode

padding_baud_rate pb lowest baud rate where padding needed

virtual_terminal vt virtual terminal number (CB/unix)

width_status_line ws columns in status line

num_labels Nl number of labels on screen

label_height lh rows in each label

label_width lw columns in each label

max_attributes ma maximum combined attributes terminal can

handle

maximum_windows MW maximum number of definable windows

magic_cookie_glitch_ul ug number of blanks left by underline

#

These came in with SVr4’s color support

#

max_colors Co maximum numbers of colors on screen

max_pairs pa maximum number of color-pairs on the screen

no_color_video NC video attributes that cannot be used with

colors

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

#

The following numeric capabilities are present in the SVr4.0 term

structure, but are not yet documented in the man page.

They came in with SVr4’s printer support.

#

buffer_capacity Ya numbers of bytes buffered before printing

dot_vert_spacing Yb spacing of pins vertically in pins per inch

dot_horz_spacing Yc spacing of dots horizontally in dots per

inch

max_micro_address Yd maximum value in micro_..._address

max_micro_jump Ye maximum value in parm_..._micro

micro_char_size Yf character size when in micro mode

micro_line_size Yg line size when in micro mode

number_of_pins Yh numbers of pins in print-head

output_res_char Yi horizontal resolution in units per line

output_res_line Yj vertical resolution in units per line

output_res_horz_inch Yk horizontal resolution in units per inch

output_res_vert_inch Yl vertical resolution in units per inch

print_rate Ym print rate in chars per second

wide_char_size Yn character step size when in double wide

mode

buttons BT number of buttons on mouse

bit_image_entwining Yo number of passed for each bit-image row

bit_image_type Yp type of bit-image device

These are the string capabilities:

String TCap Description
Variables Code
back_tab bt back tab (P)

bell bl audible signal (bell) (P)

carriage_return cr carriage return (P*)

change_scroll_region cs change region to line #1 to line #2 (P)

clear_all_tabs ct clear all tab stops (P)

clear_screen cl clear screen and home cursor (P*)

clr_eol ce clear to end of line (P)

clr_eos cd clear to end of screen (P*)

column_address ch horizontal position #1, absolute (P)

command_character CC terminal settable cmd character in

prototype

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

cursor_address cm move to row #1 columns #2

cursor_down do down one line

cursor_home ho home cursor

cursor_invisible vi make cursor invisible

cursor_left le move left one space

cursor_mem_address CM memory relative cursor addressing

cursor_normal ve make cursor appear normal (undo

cursor_invisible/cursor_visible)

cursor_right nd move right one space

cursor_to_ll ll last line, first column

cursor_up up up one line

cursor_visible vs make cursor very visible

delete_character dc delete character (P*)

delete_line dl delete line (P*)

dis_status_line ds disable status line

down_half_line hd half a line down

enter_alt_charset_mode as start alternate character set (P)

enter_blink_mode mb turn on blinking

enter_bold_mode md turn on bold (extra bright) mode

enter_ca_mode ti string to start programs using

cursor_address

enter_delete_mode dm enter delete mode

enter_dim_mode mh turn on half-bright mode

enter_insert_mode im enter insert mode

enter_secure_mode mk turn on blank mode (characters invisible)

enter_protected_mode mp turn on protected mode

enter_reverse_mode mr turn on reverse video mode

enter_standout_mode so begin standout mode

enter_underline_mode us begin underline mode

erase_chars ec erase #1 characters (P)

exit_alt_charset_mode ae end alternate character set (P)

exit_attribute_mode me turn off all attributes

exit_ca_mode te strings to end programs using cup

exit_delete_mode ed end delete mode

exit_insert_mode ei exit insert mode

exit_standout_mode se exit standout mode

exit_underline_mode ue exit underline mode

flash_screen vb visible bell (may not move cursor)

form_feed ff hardcopy terminal page eject (P*)

from_status_line fs return from status line

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

init_1string i1 initialization string

init_2string is initialization string

init_3string i3 initialization string

init_file if name of initialization file

insert_character ic insert character (P)

insert_line al insert line (P*)

insert_padding ip insert padding after inserted character

key_backspace kb backspace key

key_catab ka clear-all-tabs key

key_clear kC clear-screen or erase key

key_ctab kt clear-tab key

key_dc kD delete-character key

key_dl kL delete-line key

key_down kd down-arrow key

key_eic kM sent by rmir or smir in insert mode

key_eol kE clear-to-end-of-line key

key_eos kS clear-to-end-of-screen key

key_f0 k0 F0 function key

key_f1 k1 F1 function key

key_f10 k; F10 function key

key_f2 k2 F2 function key

key_f3 k3 F3 function key

key_f4 k4 F4 function key

key_f5 k5 F5 function key

key_f6 k6 F6 function key

key_f7 k7 F7 function key

key_f8 k8 F8 function key

key_f9 k9 F9 function key

key_home kh home key

key_ic kI insert-character key

key_il kA insert-line key

key_left kl left-arrow key

key_ll kH last-line key

key_npage kN next-page key

key_ppage kP prev-page key

key_right kr right-arrow key

key_sf kF scroll-forward key

key_sr kR scroll-backward key

key_stab kT set-tab key

key_up ku up-arrow key

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

keypad_local ke leave ’keyboard_transmit’ mode

keypad_xmit ks enter ’keyboard_transmit’ mode

lab_f0 l0 label on function key f0 if notf0

lab_f1 l1 label on function key f1 if notf1

lab_f10 la label on function key f10 if not f10

lab_f2 l2 label on function key f2 if notf2

lab_f3 l3 label on function key f3 if notf3

lab_f4 l4 label on function key f4 if notf4

lab_f5 l5 label on function key f5 if notf5

lab_f6 l6 label on function key f6 if notf6

lab_f7 l7 label on function key f7 if notf7

lab_f8 l8 label on function key f8 if notf8

lab_f9 l9 label on function key f9 if notf9

meta_off mo turn off meta mode

meta_on mm turn on meta mode (8th-bit on)

newline nw newline (behave like cr followed by lf)

pad_char pc padding char (instead of null)

parm_dch DC delete #1 chars (P*)

parm_delete_line DL delete #1 lines (P*)

parm_down_cursor DO down #1 lines (P*)

parm_ich IC insert #1 chars (P*)

parm_index SF scroll forward #1 lines (P)

parm_insert_line AL insert #1 lines (P*)

parm_left_cursor LE move #1 chars to the left (P)

parm_right_cursor RI move #1 chars to the right (P*)

parm_rindex SR scroll back #1 lines (P)

parm_up_cursor UP up #1 lines (P*)

pkey_key pk program function key #1 to type string #2

pkey_local pl program function key #1 to execute

string #2

pkey_xmit px program function key #1 to transmit

string #2

print_screen ps print contents of screen

prtr_off pf turn off printer

prtr_on po turn on printer

repeat_char rp repeat char #1 #2 times (P*)

reset_1string r1 reset string

reset_2string r2 reset string

reset_3string r3 reset string

reset_file rf name of reset file

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

restore_cursor rc restore cursor to last position of

save_cursor

row_address cv vertical position #1 absolute (P)

save_cursor sc save current cursor position (P)

scroll_forward sf scroll text up (P)

scroll_reverse sr scroll text down (P)

set_attributes sa define video attributes #1-#9 (PG9)

set_tab st set a tab in every row, current columns

set_window wi current window is lines #1-#2 cols #3-#4

tab ta tab to next 8-space hardware tab stop

to_status_line ts move to status line

underline_char uc underline char and move past it

up_half_line hu half a line up

init_prog iP path name of program for initialization

key_a1 K1 upper left of keypad

key_a3 K3 upper right of keypad

key_b2 K2 center of keypad

key_c1 K4 lower left of keypad

key_c3 K5 lower right of keypad

prtr_non pO turn on printer for #1 bytes

termcap_init2 i2 secondary initialization string

termcap_reset rs terminal reset string

#

SVr1 capabilities stop here. IBM’s version of terminfo is the same as

SVr4 up to this point, but has a different set afterwards.

#

char_padding rP like insert_padding but when in insert mode

acs_chars ac graphics charset pairs - def=vt100

plab_norm pn program label #1 to show string #2

key_btab kB back-tab key

enter_xon_mode SX turn on xon/xoff handshaking

exit_xon_mode RX turn off xon/xoff handshaking

enter_am_mode SA turn on automatic margins

exit_am_mode RA turn off automatic margins

xon_character XN XON character

xoff_character XF XOFF character

ena_acs eA enable alternate char set

label_on LO turn on soft labels

label_off LF turn off soft labels

key_beg @1 begin key

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

key_cancel @2 cancel key

key_close @3 close key

key_command @4 commandkey

key_copy @5 copy key

key_create @6 create key

key_end @7 end key

key_enter @8 enter/send key

key_exit @9 exit key

key_find @0 find key

key_help %1 help key

key_mark %2 mark key

key_message %3 message key

key_move %4 move key

key_next %5 next key

key_open %6 open key

key_options %7 options key

key_previous %8 previous key

key_print %9 print key

key_redo %0 redo key

key_reference &1 reference key

key_refresh &2 refresh key

key_replace &3 replace key

key_restart &4 restart key

key_resume &5 resume key

key_save &6 save key

key_suspend &7 suspend key

key_undo &8 undo key

key_sbeg &9 shifted key

key_scancel &0 shifted key

key_scommand *1 shifted key

key_scopy *2 shifted key

key_screate *3 shifted key

key_sdc *4 shifted key

key_sdl *5 shifted key

key_select *6 select key

key_send *7 shifted key

key_seol *8 shifted key

key_sexit *9 shifted key

key_sfind *0 shifted key

key_shelp #1 shifted key

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

key_shome #2 shifted key

key_sic #3 shifted key

key_sleft #4 shifted key

key_smessage %a shifted key

key_smove %b shifted key

key_snext %c shifted key

key_soptions %d shifted key

key_sprevious %e shifted key

key_sprint %f shifted key

key_sredo %g shifted key

key_sreplace %h shifted key

key_sright %i shifted key

key_srsume %j shifted key

key_ssave !1 shifted key

key_ssuspend !2 shifted key

key_sundo !3 shifted key

req_for_input RF send next input char (for ptys)

key_f11 F1 F11 function key

key_f12 F2 F12 function key

key_f13 F3 F13 function key

key_f14 F4 F14 function key

key_f15 F5 F15 function key

key_f16 F6 F16 function key

key_f17 F7 F17 function key

key_f18 F8 F18 function key

key_f19 F9 F19 function key

key_f20 FA F20 function key

key_f21 FB F21 function key

key_f22 FC F22 function key

key_f23 FD F23 function key

key_f24 FE F24 function key

key_f25 FF F25 function key

key_f26 FG F26 function key

key_f27 FH F27 function key

key_f28 FI F28 function key

key_f29 FJ F29 function key

key_f30 FK F30 function key

key_f31 FL F31 function key

key_f32 FM F32 function key

key_f33 FN F33 function key

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

key_f34 FO F34 function key

key_f35 FP F35 function key

key_f36 FQ F36 function key

key_f37 FR F37 function key

key_f38 FS F38 function key

key_f39 FT F39 function key

key_f40 FU F40 function key

key_f41 FV F41 function key

key_f42 FW F42 function key

key_f43 FX F43 function key

key_f44 FY F44 function key

key_f45 FZ F45 function key

key_f46 Fa F46 function key

key_f47 Fb F47 function key

key_f48 Fc F48 function key

key_f49 Fd F49 function key

key_f50 Fe F50 function key

key_f51 Ff F51 function key

key_f52 Fg F52 function key

key_f53 Fh F53 function key

key_f54 Fi F54 function key

key_f55 Fj F55 function key

key_f56 Fk F56 function key

key_f57 Fl F57 function key

key_f58 Fm F58 function key

key_f59 Fn F59 function key

key_f60 Fo F60 function key

key_f61 Fp F61 function key

key_f62 Fq F62 function key

key_f63 Fr F63 function key

clr_bol cb Clear to beginning of line

clear_margins MC clear right and left soft margins

set_left_margin ML set left soft margin

set_right_margin MR set right soft margin

label_format Lf label format

set_clock SC set clock, #1 hrs #2 mins #3 secs

display_clock DK display clock at (#1,#2)

remove_clock RC remove clock

create_window CW define a window #1 from #2, #3 to #4, #5

goto_window WG go to window #1

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

hangup HU hang-up phone

dial_phone DI dial number #1

quick_dial QD dial number #1 without checking

tone TO select touch tone dialing

pulse PU select pulse dialling

flash_hook fh flash switch hook

fixed_pause PA pause for 2-3 seconds

wait_tone WA wait for dial-tone

user0 u0 User string #0

user1 u1 User string #1

user2 u2 User string #2

user3 u3 User string #3

user4 u4 User string #4

user5 u5 User string #5

user6 u6 User string #6

user7 u7 User string #7

user8 u8 User string #8

user9 u9 User string #9

#

SVr4 added these capabilities to support color

#

orig_pair op Set default pair to its original value

orig_colors oc Set all color pairs to the original ones

initialize_color Ic initialize color #1 to (#2,#3,#4)

initialize_pair Ip Initialize color pair #1 to fg=(#2,#3,#4),

bg=(#5,#6,#7)

set_color_pair sp Set current color pair to #1

set_foreground Sf Set foreground color #1

set_background Sb Set background color #1

#

SVr4 added these capabilities to support printers

#

change_char_pitch ZA Change number of characters per inch

change_line_pitch ZB Change number of lines per inch

change_res_horz ZC Change horizontal resolution

change_res_vert ZD Change vertical resolution

define_char ZE Define a character

enter_doublewide_mode ZF Enter double-wide mode

enter_draft_quality ZG Enter draft-quality mode

enter_italics_mode ZH Enter italic mode

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

enter_leftward_mode ZI Start leftward carriage motion

enter_micro_mode ZJ Start micro-motion mode

enter_near_letter_quality ZK Enter NLQ mode

enter_normal_quality ZL Enter normal-quality mode

enter_shadow_mode ZM Enter shadow-print mode

enter_subscript_mode ZN Enter subscript mode

enter_superscript_mode ZO Enter superscript mode

enter_upward_mode ZP Start upward carriage motion

exit_doublewide_mode ZQ End double-wide mode

exit_italics_mode ZR End italic mode

exit_leftward_mode ZS End left-motion mode

exit_micro_mode ZT End micro-motion mode

exit_shadow_mode ZU End shadow-print mode

exit_subscript_mode ZV End subscript mode

exit_superscript_mode ZW End superscript mode

exit_upward_mode ZX End reverse character motion

micro_column_address ZY Like column_address in micro mode

micro_down ZZ Like cursor_down in micro mode

micro_left Za Like cursor_left in micro mode

micro_right Zb Like cursor_right in micro mode

micro_row_addressZc Like row_address in micro mode

micro_up Zd Like cursor_up in micro mode

order_of_pins Ze Match software bits to print-head pins

parm_down_micro Zf Like parm_down_cursor in micro mode

parm_left_micro Zg Like parm_left_cursor in micro mode

parm_right_micro Zh Like parm_right_cursor in micro mode

parm_up_micro Zi Like parm_up_cursor in micro mode

select_char_set Zj Select character set

set_bottom_margin Zk Set bottom margin at current line

set_bottom_margin_parm Zl Set bottom margin at line #1 or #2 lines

from bottom

set_left_margin_parm Zm Set left (right) margin at column #1 (#2)

set_right_margin_parm Zn Set right margin at column #1

set_top_margin Zo Set top margin at current line

set_top_margin_parm Zp Set top (bottom) margin at row #1 (#2)

start_bit_image Zq Start printing bit image graphics

start_char_set_def Zr Start character set definition

stop_bit_image Zs Stop printing bit image graphics

stop_char_set_def Zt End definition of character aet

subscript_characters Zu List of subscriptible characters

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

superscript_characters Zv List of superscriptible characters

these_cause_cr Zw Printing any of these chars causes CR

zero_motion Zx No motion for subsequent character

#

The following string capabilities are present in the SVr4.0 term

structure, but are not documented in the man page.

#

char_set_names Zy List of character set names

key_mouse Km Mouse event has occurred

mouse_info Mi Mouse status information

req_mouse_pos RQ Request mouse position

get_mouse Gm Curses should get button events

set_a_foreground AF Set ANSI foreground color

set_a_background AB Set ANSI background color

pkey_plab xl Program function key #1 to type string #2

and show string #3

device_type dv Indicate language/codeset support

code_set_init ci Init sequence for multiple codesets

set0_des_seq s0 Shift to code set 0 (EUC set 0, ASCII)

set1_des_seq s1 Shift to code set 1

set2_des_seq s2 Shift to code set 2

set3_des_seq s3 Shift to code set 3

set_lr_margin ML Set both left and right margins to #1, #2

set_tb_margin MT Sets both top and bottom margins to #1, #2

bit_image_repeat Xy Repeat bit image cell #1 #2 times

bit_image_newline Zz Move to next row of the bit image

bit_image_carriage_return Yv Move to beginning of same row

color_names Yw Give name for color #1

define_bit_image_region Yx Define rectangular bit image region

end_bit_image_region Yy End a bit-image region

set_color_band Yz Change to ribbon color #1

set_page_length YZ Set page length to #1 lines

#

SVr4 added these capabilities for direct PC-clone support

#

display_pc_char S1 Display PC character

enter_pc_charset_mode S2 Enter PC character display mode

exit_pc_charset_mode S3 Exit PC character display mode

enter_scancode_mode S4 Enter PC scancode mode

exit_scancode_mode S5 Exit PC scancode mode

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

pc_term_options S6 PC terminal options

scancode_escape S7 Escape for scancode emulation

alt_scancode_esc S8 Alternate escape for scancode emulation

#

The XSI Curses standard added these.

#

enter_horizontal_hl_mode Xh Enter horizontal highlight mode

enter_left_hl_mode Xl Enter left highlight mode

enter_low_hl_modeXo Enter low highlight mode

enter_right_hl_mode Xr Enter right highlight mode

enter_top_hl_mode Xt Enter top highlight mode

enter_vertical_hl_mode Xv Enter vertical highlight mode

Obsolete termcap capabilities. New software should not rely on them at all.

Boolean TCap Description
Variables Code
linefeed_is_newline NL move down with ^J

even_parity EP terminal requires even parity

odd_parity OP terminal requires odd parity

half_duplex HD terminal is half-duplex

lower_case_only LC terminal has only lower case

upper_case_only UC terminal has only upper case

has_hardware_tabs pt has 8-char tabs invoked with ^I

return_does_clr_eolxr return clears the line

tek_4025_insert_line xx Tektronix 4025 insert-line glitch

backspaces_with_bs bs uses ^H to move left

crt_no_scrolling ns crt cannot scroll

no_correctly_working_cr nc no way to go to start of line

Number TCap Description
Variables Code
backspace_delay dB padding required for ^H

form_feed_delay dF padding required for ^L

horizontal_tab_delay dT padding required for ^I

vertical_tab_delay dV padding required for ^V

number_of_function_keys kn count of function keys

carriage_return_delay dC pad needed for CR

new_line_delay dN pad needed for LF

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

String TCap Description
Variables Code
other_non_function_keys ko list of self-mapped keycaps

arrow_key_map ma map arrow keys

memory_lock_above ml lock visible screen memory above the

current line

memory_unlock mu unlock visible screen memory above the

current line

linefeed_if_not_lf nl use to move down

backspace_if_not_bs bc move left, if not ^H

A Sample Entry
The following entry, which describes the Concept-100, is among the more complex entries in the

termcap file as of this writing.

ca|concept100|c100|concept|c104|concept100-4p|HDS Concept-100:\

:al=3*\E^R:am:bl=^G:cd=16*\E^C:ce=16\E^U:cl=2*^L:cm=\Ea%+ %+ :\

:co#80:.cr=9^M:db:dc=16\E^A:dl=3*\E^B:do=^J:ei=\E\200:eo:im=\E^P:in:\

:ip=16*:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E:k1=\E5:\

:k2=\E6:k3=\E7:kb=^h:kd=\E<:ke=\Ex:kh=\E?:kl=\E>:kr=\E=:ks=\EX:\

:ku=\E;:le=^H:li#24:mb=\EC:me=\EN\200:mh=\EE:mi:mk=\EH:mp=\EI:\

:mr=\ED:nd=\E=:pb#9600:rp=0.2*\Er%.%+ :se=\Ed\Ee:sf=^J:so=\EE\ED:\

:.ta=8\t:te=\Ev \200\200\200\200\200\200\Ep\r\n:\

:ti=\EU\Ev 8p\Ep\r:ue=\Eg:ul:up=\E;:us=\EG:\

:vb=\Ek\200\200\200\200\200\200\200\200\200\200\200\200\200\200\EK:\

:ve=\Ew:vs=\EW:vt#8:xn:\

:bs:cr=^M:dC#9:dT#8:nl=^J:ta=^I:pt:

Entries may continue onto multiple lines by giving a \ as the last character of a line, and empty fields

may be included for readability (here between the last field on a line and the first field on the next).

Comments may be included on lines beginning with "#".

Types of Capabilities
Capabilities in termcap are of three types: Boolean capabilities, which indicate particular features that

the terminal has; numeric capabilities, giving the size of the display or the size of other attributes; and

string capabilities, which give character sequences that can be used to perform particular terminal

operations. All capabilities have two-letter codes. For instance, the fact that the Concept has automatic

margins (an automatic return and linefeed when the end of a line is reached) is indicated by the Boolean

capability am. Hence the description of the Concept includes am.

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

Numeric capabilities are followed by the character ‘#’ then the value. In the example above co, which

indicates the number of columns the display has, gives the value ‘80’ for the Concept.

Finally, string-valued capabilities, such as ce (clear-to-end-of-line sequence) are given by the two-letter

code, an ‘=’, then a string ending at the next following ‘:’. A delay in milliseconds may appear after the

‘=’ in such a capability, which causes padding characters to be supplied by tputs(3) after the remainder

of the string is sent to provide this delay. The delay can be either a number, such as ‘20’, or a number

followed by an ‘*’, such as ‘3*’. An ‘*’ indicates that the padding required is proportional to the

number of lines affected by the operation, and the amount given is the per-affected-line padding

required. (In the case of insert-character, the factor is still the number of lines affected; this is always 1

unless the terminal has in and the software uses it.) When an ‘*’ is specified, it is sometimes useful to

give a delay of the form ‘3.5’ to specify a delay per line to tenths of milliseconds. (Only one decimal

place is allowed.)

A number of escape sequences are provided in the string-valued capabilities for easy encoding of control

characters there. \E maps to an ESC character, ^X maps to a control-X for any appropriate X, and the

sequences \n \r \t \b \f map to linefeed, return, tab, backspace, and formfeed, respectively. Finally,

characters may be given as three octal digits after a \, and the characters ^ and \ may be given as \^ and

\\. If it is necessary to place a : in a capability it must be escaped as \: or be encoded as \072. If it is

necessary to place a NUL character in a string capability it must be encoded as \200. (The routines that

deal with termcap use C strings and strip the high bits of the output very late, so that a \200 comes out as

a \000 would.)

Sometimes individual capabilities must be commented out. To do this, put a period before the capability

name. For example, see the first cr and ta in the example above.

Preparing Descriptions
The most effective way to prepare a terminal description is by imitating the description of a similar

terminal in termcap and to build up a description gradually, using partial descriptions with vi(1) to check

that they are correct. Be aware that a very unusual terminal may expose deficiencies in the ability of the

termcap file to describe it or bugs in vi(1). To easily test a new terminal description you are working on

you can put it in your home directory in a file called .termcap and programs will look there before

looking in /usr/share/misc/termcap. You can also set the environment variable TERMPATH to a list of

absolute file pathnames (separated by spaces or colons), one of which contains the description you are

working on, and programs will search them in the order listed, and nowhere else. See termcap(3). The

TERMCAP environment variable is usually set to the termcap entry itself to avoid reading files when

starting up a program.

To get the padding for insert-line right (if the terminal manufacturer did not document it), a severe test is

to use vi(1) to edit /etc/passwd at 9600 baud, delete roughly 16 lines from the middle of the screen, then

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

hit the ‘u’ key several times quickly. If the display messes up, more padding is usually needed. A

similar test can be used for insert-character.

Basic Capabilities
The number of columns on each line of the display is given by the co numeric capability. If the display

is a CRT, then the number of lines on the screen is given by the li capability. If the display wraps

around to the beginning of the next line when the cursor reaches the right margin, then it should have the

am capability. If the terminal can clear its screen, the code to do this is given by the cl string capability.

If the terminal overstrikes (rather than clearing the position when a character is overwritten), it should

have the os capability. If the terminal is a printing terminal, with no soft copy unit, give it both hc and

os. (os applies to storage scope terminals, such as the Tektronix 4010 series, as well as to hard copy and

APL terminals.) If there is a code to move the cursor to the left edge of the current row, give this as cr.

(Normally this will be carriage-return, ^M.) If there is a code to produce an audible signal (bell, beep,

etc.), give this as bl.

If there is a code (such as backspace) to move the cursor one position to the left, that capability should

be given as le. Similarly, codes to move to the right, up, and down should be given as nd, up, and do,

respectively. These local cursor motions should not alter the text they pass over; for example, you

would not normally use "nd= " unless the terminal has the os capability, because the space would erase

the character moved over.

A very important point here is that the local cursor motions encoded in termcap have undefined behavior

at the left and top edges of a CRT display. Programs should never attempt to backspace around the left

edge, unless bw is given, and never attempt to go up off the top using local cursor motions.

In order to scroll text up, a program goes to the bottom left corner of the screen and sends the sf (index)

string. To scroll text down, a program goes to the top left corner of the screen and sends the sr (reverse

index) string. The strings sf and sr have undefined behavior when not on their respective corners of the

screen. Parameterized versions of the scrolling sequences are SF and SR, which have the same

semantics as sf and sr except that they take one parameter and scroll that many lines. They also have

undefined behavior except at the appropriate corner of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is output there,

but this does not necessarily apply to nd from the last column. Leftward local motion is defined from

the left edge only when bw is given; then an le from the left edge will move to the right edge of the

previous row. This is useful for drawing a box around the edge of the screen, for example. If the

terminal has switch-selectable automatic margins, the termcap description usually assumes that this

feature is on, i.e., am. If the terminal has a command that moves to the first column of the next line, that

command can be given as nw (newline). It is permissible for this to clear the remainder of the current

line, so if the terminal has no correctly-working CR and LF it may still be possible to craft a working nw

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

out of one or both of them.

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the Teletype model 33 is

described as

T3|tty33|33|tty|Teletype model 33:\

:bl=^G:co#72:cr=^M:do=^J:hc:os:

and the Lear Siegler ADM-3 is described as

l3|adm3|3|LSI ADM-3:\

:am:bl=^G:cl=^Z:co#80:cr=^M:do=^J:le=^H:li#24:sf=^J:

Parameterized Strings
Cursor addressing and other strings requiring parameters are described by a parameterized string

capability, with printf(3)-like escapes %x in it, while other characters are passed through unchanged.

For example, to address the cursor the cm capability is given, using two parameters: the row and column

to move to. (Rows and columns are numbered from zero and refer to the physical screen visible to the

user, not to any unseen memory. If the terminal has memory-relative cursor addressing, that can be

indicated by an analogous CM capability.)

The % encodings have the following meanings:

%% output ‘%’

%d output value as in printf(3) %d

%2 output value as in printf(3) %2d

%3 output value as in printf(3) %3d

%. output value as in printf(3) %c

%+x add x to value, then do %.

%>xy if value > x then add y, no output

%r reverse order of two parameters, no output

%i increment by one, no output

%n exclusive-or all parameters with 0140 (Datamedia 2500)

%B BCD (16*(value/10)) + (value%10), no output

%D Reverse coding (value - 2*(value%16)), no output (Delta Data).

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be sent

"\E&a12c03Y" padded for 6 milliseconds. Note that the order of the row and column coordinates is

reversed here and that the row and column are sent as two-digit integers. Thus its cm capability is

"cm=6\E&%r%2c%2Y".

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

The Datamedia 2500 needs the current row and column sent encoded in binary using "%.". Terminals

that use "%." need to be able to backspace the cursor (le) and to move the cursor up one line on the

screen (up). This is necessary because it is not always safe to transmit \n, ^D, and \r, as the system may

change or discard them. (Programs using termcap must set terminal modes so that tabs are not

expanded, so \t is safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the Lear Siegler ADM-3a, which offsets row and column by a blank character, thus

"cm=\E=%+ %+ ".

Row or column absolute cursor addressing can be given as single parameter capabilities ch (horizontal

position absolute) and cv (vertical position absolute). Sometimes these are shorter than the more general

two-parameter sequence (as with the Hewlett-Packard 2645) and can be used in preference to cm. If

there are parameterized local motions (e.g., move n positions to the right) these can be given as DO, LE,

RI, and UP with a single parameter indicating how many positions to move. These are primarily useful

if the terminal does not have cm, such as the Tektronix 4025.

Cursor Motions
If the terminal has a fast way to home the cursor (to the very upper left corner of the screen), this can be

given as ho. Similarly, a fast way of getting to the lower left-hand corner can be given as ll; this may

involve going up with up from the home position, but a program should never do this itself (unless ll
does), because it can make no assumption about the effect of moving up from the home position. Note

that the home position is the same as cursor address (0,0): to the top left corner of the screen, not of

memory. (Therefore, the "\EH" sequence on Hewlett-Packard terminals cannot be used for ho.)

Area Clears
If the terminal can clear from the current position to the end of the line, leaving the cursor where it is,

this should be given as ce. If the terminal can clear from the current position to the end of the display,

this should be given as cd. cd must only be invoked from the first column of a line. (Therefore, it can

be simulated by a request to delete a large number of lines, if a true cd is not available.)

Insert/Delete Line
If the terminal can open a new blank line before the line containing the cursor, this should be given as al;
this must be invoked only from the first position of a line. The cursor must then appear at the left of the

newly blank line. If the terminal can delete the line that the cursor is on, this should be given as dl; this

must only be used from the first position on the line to be deleted. Versions of al and dl which take a

single parameter and insert or delete that many lines can be given as AL and DL. If the terminal has a

settable scrolling region (like the VT100), the command to set this can be described with the cs
capability, which takes two parameters: the top and bottom lines of the scrolling region. The cursor

position is, alas, undefined after using this command. It is possible to get the effect of insert or delete

line using this command -- the sc and rc (save and restore cursor) commands are also useful. Inserting

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

lines at the top or bottom of the screen can also be done using sr or sf on many terminals without a true

insert/delete line, and is often faster even on terminals with those features.

If the terminal has the ability to define a window as part of memory which all commands affect, it

should be given as the parameterized string wi. The four parameters are the starting and ending lines in

memory and the starting and ending columns in memory, in that order. (This terminfo(5) capability is

described for completeness. It is unlikely that any termcap-using program will support it.)

If the terminal can retain display memory above the screen, then the da capability should be given; if

display memory can be retained below, then db should be given. These indicate that deleting a line or

scrolling may bring non-blank lines up from below or that scrolling back with sr may bring down non-

blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to insert/delete character that can be

described using termcap. The most common insert/delete character operations affect only the characters

on the current line and shift characters off the end of the line rigidly. Other terminals, such as the

Concept-100 and the Perkin Elmer Owl, make a distinction between typed and untyped blanks on the

screen, shifting upon an insert or delete only to an untyped blank on the screen which is either

eliminated or expanded to two untyped blanks. You can determine the kind of terminal you have by

clearing the screen then typing text separated by cursor motions. Type "abc def" using local cursor

motions (not spaces) between the "abc" and the "def". Then position the cursor before the "abc" and put

the terminal in insert mode. If typing characters causes the rest of the line to shift rigidly and characters

to fall off the end, then your terminal does not distinguish between blanks and untyped positions. If the

"abc" shifts over to the "def" which then move together around the end of the current line and onto the

next as you insert, then you have the second type of terminal and should give the capability in, which

stands for "insert null". While these are two logically separate attributes (one line vs. multi-line insert

mode, and special treatment of untyped spaces), we have seen no terminals whose insert mode cannot be

described with the single attribute.

The termcap entries can describe both terminals that have an insert mode and terminals that send a

simple sequence to open a blank position on the current line. Give as im the sequence to get into insert

mode. Give as ei the sequence to leave insert mode. Now give as ic any sequence that needs to be sent

just before each character to be inserted. Most terminals with a true insert mode will not give ic;

terminals that use a sequence to open a screen position should give it here. (If your terminal has both,

insert mode is usually preferable to ic. Do not give both unless the terminal actually requires both to be

used in combination.) If post-insert padding is needed, give this as a number of milliseconds in ip (a

string option). Any other sequence that may need to be sent after insertion of a single character can also

be given in ip. If your terminal needs to be placed into an ‘insert mode’ and needs a special code

preceding each inserted character, then both im/ ei and ic can be given, and both will be used. The IC

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

capability, with one parameter n, will repeat the effects of ic n times.

It is occasionally necessary to move around while in insert mode to delete characters on the same line

(e.g., if there is a tab after the insertion position). If your terminal allows motion while in insert mode,

you can give the capability mi to speed up inserting in this case. Omitting mi will affect only speed.

Some terminals (notably Datamedia’s) must not have mi because of the way their insert mode works.

Finally, you can specify dc to delete a single character, DC with one parameter n to delete n characters,

and delete mode by giving dm and ed to enter and exit delete mode (which is any mode the terminal

needs to be placed in for dc to work).

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes, these can be represented in a number of

different ways. You should choose one display form as standout mode, representing a good high-

contrast, easy-on-the-eyes format for highlighting error messages and other attention getters. (If you

have a choice, reverse video plus half-bright is good, or reverse video alone.) The sequences to enter

and exit standout mode are given as so and se, respectively. If the code to change into or out of standout

mode leaves one or even two blank spaces or garbage characters on the screen, as the TVI 912 and

Teleray 1061 do, then sg should be given to tell how many characters are left.

Codes to begin underlining and end underlining can be given as us and ue, respectively. Underline

mode change garbage is specified by ug, similar to sg. If the terminal has a code to underline the current

character and move the cursor one position to the right, such as the Microterm Mime, this can be given

as uc.

Other capabilities to enter various highlighting modes include mb (blinking), md (bold or extra bright),

mh (dim or half-bright), mk (blanking or invisible text), mp (protected), mr (reverse video), me (turn off

all attribute modes), as (enter alternate character set mode), and ae (exit alternate character set mode).

Turning on any of these modes singly may or may not turn off other modes.

If there is a sequence to set arbitrary combinations of mode, this should be given as sa (set attributes),

taking 9 parameters. Each parameter is either 0 or 1, as the corresponding attributes is on or off. The 9

parameters are, in order: standout, underline, reverse, blink, dim, bold, blank, protect, and alternate

character set. Not all modes need be supported by sa, only those for which corresponding attribute

commands exist. (It is unlikely that a termcap-using program will support this capability, which is

defined for compatibility with terminfo(5).)

Terminals with the "magic cookie" glitches (sg and ug), rather than maintaining extra attribute bits for

each character cell, instead deposit special "cookies", or "garbage characters", when they receive mode-

setting sequences, which affect the display algorithm.

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

Some terminals, such as the Hewlett-Packard 2621, automatically leave standout mode when they move

to a new line or when the cursor is addressed. Programs using standout mode should exit standout mode

on such terminals before moving the cursor or sending a newline. On terminals where this is not a

problem, the ms capability should be present to say that this overhead is unnecessary.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement), this can

be given as vb; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to change, for

example, a non-blinking underline into an easier-to-find block or blinking underline), give this sequence

as vs. If there is a way to make the cursor completely invisible, give that as vi. The capability ve, which

undoes the effects of both of these modes, should also be given.

If your terminal correctly displays underlined characters (with no special codes needed) even though it

does not overstrike, then you should give the capability ul. If overstrikes are erasable with a blank, this

should be indicated by giving eo.

Keypad
If the terminal has a keypad that transmits codes when the keys are pressed, this information can be

given. Note that it is not possible to handle terminals where the keypad only works in local mode (this

applies, for example, to the unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit

or not transmit, give these codes as ks and ke. Otherwise the keypad is assumed to always transmit. The

codes sent by the left-arrow, right-arrow, up-arrow, down-arrow, and home keys can be given as kl, kr,

ku, kd, and kh, respectively. If there are function keys such as f0, f1, ..., f9, the codes they send can be

given as k0, k1, ..., k9. If these keys have labels other than the default f0 through f9, the labels can be

given as l0, l1, ..., l9. The codes transmitted by certain other special keys can be given: kH (home

down), kb (backspace), ka (clear all tabs), kt (clear the tab stop in this column), kC (clear screen or

erase), kD (delete character), kL (delete line), kM (exit insert mode), kE (clear to end of line), kS (clear

to end of screen), kI (insert character or enter insert mode), kA (insert line), kN (next page), kP (previous

page), kF (scroll forward/down), kR (scroll backward/up), and kT (set a tab stop in this column). In

addition, if the keypad has a 3 by 3 array of keys including the four arrow keys, then the other five keys

can be given as K1, K2, K3, K4, and K5. These keys are useful when the effects of a 3 by 3 directional

pad are needed. The obsolete ko capability formerly used to describe "other" function keys has been

completely supplanted by the above capabilities.

The ma entry is also used to indicate arrow keys on terminals that have single-character arrow keys. It is

obsolete but still in use in version 2 of vi which must be run on some minicomputers due to memory

limitations. This field is redundant with kl, kr, ku, kd, and kh. It consists of groups of two characters.

In each group, the first character is what an arrow key sends, and the second character is the

corresponding vi command. These commands are h for kl, j for kd, k for ku, l for kr, and H for kh. For

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

example, the Mime would have "ma=^Hh^Kj^Zk^Xl" indicating arrow keys left (^H), down (^K), up

(^Z), and right (^X). (There is no home key on the Mime.)

Tabs and Initialization
If the terminal needs to be in a special mode when running a program that uses these capabilities, the

codes to enter and exit this mode can be given as ti and te. This arises, for example, from terminals like

the Concept with more than one page of memory. If the terminal has only memory-relative cursor

addressing and not screen-relative cursor addressing, a screen-sized window must be fixed into the

display for cursor addressing to work properly. This is also used for the Tektronix 4025, where ti sets

the command character to be the one used by termcap.

Other capabilities include is, an initialization string for the terminal, and if, the name of a file containing

long initialization strings. These strings are expected to set the terminal into modes consistent with the

rest of the termcap description. They are normally sent to the terminal by the tset(1) program each time

the user logs in. They will be printed in the following order: is; setting tabs using ct and st; and finally

if. (Terminfo uses i1-i2 instead of is and runs the program iP and prints i3 after the other initializations.)

A pair of sequences that does a harder reset from a totally unknown state can be analogously given as rs
and if. These strings are output by the reset(1) program, which is used when the terminal gets into a

wedged state. (Terminfo uses r1-r3 instead of rs.) Commands are normally placed in rs and rf only if

they produce annoying effects on the screen and are not necessary when logging in. For example, the

command to set the VT100 into 80-column mode would normally be part of is, but it causes an annoying

glitch of the screen and is not normally needed since the terminal is usually already in 80-column mode.

If the terminal has hardware tabs, the command to advance to the next tab stop can be given as ta
(usually ^I). A "backtab" command which moves leftward to the previous tab stop can be given as bt.
By convention, if the terminal driver modes indicate that tab stops are being expanded by the computer

rather than being sent to the terminal, programs should not use ta or bt even if they are present, since the

user may not have the tab stops properly set. If the terminal has hardware tabs that are initially set every

n positions when the terminal is powered up, then the numeric parameter it is given, showing the number

of positions between tab stops. This is normally used by the tset(1) command to determine whether to

set the driver mode for hardware tab expansion, and whether to set the tab stops. If the terminal has tab

stops that can be saved in nonvolatile memory, the termcap description can assume that they are

properly set.

If there are commands to set and clear tab stops, they can be given as ct (clear all tab stops) and st (set a

tab stop in the current column of every row). If a more complex sequence is needed to set the tabs than

can be described by this, the sequence can be placed in is or if.

Delays
Certain capabilities control padding in the terminal driver. These are primarily needed by hardcopy

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

terminals and are used by the tset(1) program to set terminal driver modes appropriately. Delays

embedded in the capabilities cr, sf, le, ff, and ta will cause the appropriate delay bits to be set in the

terminal driver. If pb (padding baud rate) is given, these values can be ignored at baud rates below the

value of pb. For 4.2BSD tset(1), the delays are given as numeric capabilities dC, dN, dB, dF, and dT
instead.

Miscellaneous
If the terminal requires other than a NUL (zero) character as a pad, this can be given as pc. Only the

first character of the pc string is used.

If the terminal has commands to save and restore the position of the cursor, give them as sc and rc.

If the terminal has an extra "status line" that is not normally used by software, this fact can be indicated.

If the status line is viewed as an extra line below the bottom line, then the capability hs should be given.

Special strings to go to a position in the status line and to return from the status line can be given as ts
and fs. (fs must leave the cursor position in the same place that it was before ts. If necessary, the sc and

rc strings can be included in ts and fs to get this effect.) The capability ts takes one parameter, which is

the column number of the status line to which the cursor is to be moved. If escape sequences and other

special commands such as tab work while in the status line, the flag es can be given. A string that turns

off the status line (or otherwise erases its contents) should be given as ds. The status line is normally

assumed to be the same width as the rest of the screen, i.e., co. If the status line is a different width

(possibly because the terminal does not allow an entire line to be loaded), then its width in columns can

be indicated with the numeric parameter ws.

If the terminal can move up or down half a line, this can be indicated with hu (half-line up) and hd (half-

line down). This is primarily useful for superscripts and subscripts on hardcopy terminals. If a

hardcopy terminal can eject to the next page (form feed), give this as ff (usually ^L).

If there is a command to repeat a given character a given number of times (to save time transmitting a

large number of identical characters), this can be indicated with the parameterized string rp. The first

parameter is the character to be repeated and the second is the number of times to repeat it. (This is a

terminfo(5) feature that is unlikely to be supported by a program that uses termcap.)

If the terminal has a settable command character, such as the Tektronix 4025, this can be indicated with

CC. A prototype command character is chosen which is used in all capabilities. This character is given

in the CC capability to identify it. The following convention is supported on some UNIX systems: The

environment is to be searched for a CC variable, and if found, all occurrences of the prototype character

are replaced by the character in the environment variable. This use of the CC environment variable is a

very bad idea, as it conflicts with make(1).

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

Terminal descriptions that do not represent a specific kind of known terminal, such as switch, dialup,

patch, and network, should include the gn (generic) capability so that programs can complain that they

do not know how to talk to the terminal. (This capability does not apply to virtual terminal descriptions

for which the escape sequences are known.)

If the terminal uses xoff/xon (DC3/DC1) handshaking for flow control, give xo. Padding information

should still be included so that routines can make better decisions about costs, but actual pad characters

will not be transmitted.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character transmitted,

then this fact can be indicated with km. Otherwise, software will assume that the 8th bit is parity and it

will usually be cleared. If strings exist to turn this "meta mode" on and off, they can be given as mm and

mo.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines of

memory can be indicated with lm. An explicit value of 0 indicates that the number of lines is not fixed,

but that there is still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX system virtual terminal protocol, the terminal

number can be given as vt.

Media copy strings which control an auxiliary printer connected to the terminal can be given as ps: print

the contents of the screen; pf: turn off the printer; and po: turn on the printer. When the printer is on, all

text sent to the terminal will be sent to the printer. It is undefined whether the text is also displayed on

the terminal screen when the printer is on. A variation pO takes one parameter and leaves the printer on

for as many characters as the value of the parameter, then turns the printer off. The parameter should

not exceed 255. All text, including pf, is transparently passed to the printer while pO is in effect.

Strings to program function keys can be given as pk, pl, and px. Each of these strings takes two

parameters: the function key number to program (from 0 to 9) and the string to program it with.

Function key numbers out of this range may program undefined keys in a terminal-dependent manner.

The differences among the capabilities are that pk causes pressing the given key to be the same as the

user typing the given string; pl causes the string to be executed by the terminal in local mode; and px
causes the string to be transmitted to the computer. Unfortunately, due to lack of a definition for string

parameters in termcap, only terminfo(5) supports these capabilities.

For the xterm(1) (ports/x11/xterm) terminal emulator the traditional behavior in FreeBSD when exiting a

pager such as less(1) or more(1), or an editor such as vi(1) is NOT to clear the screen after the program

exits. If you prefer to clear the screen there are a number of "xterm-clear" entries that add this capability

in the termcap file that you can use directly, or as examples.

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

Glitches and Braindamage
Hazeltine terminals, which do not allow ‘~’ characters to be displayed, should indicate hz.

The nc capability, now obsolete, formerly indicated Datamedia terminals, which echo \r \n for carriage

return then ignore a following linefeed.

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept, should indicate xn.

If ce is required to get rid of standout (instead of merely writing normal text on top of it), xs should be

given.

Teleray terminals, where tabs turn all characters moved over to blanks, should indicate xt (destructive

tabs). This glitch is also taken to mean that it is not possible to position the cursor on top of a "magic

cookie", and that to erase standout mode it is necessary to use delete and insert line.

The Beehive Superbee, which is unable to correctly transmit the ESC or ^C characters, has xb,

indicating that the "f1" key is used for ESC and "f2" for ^C. (Only certain Superbees have this problem,

depending on the ROM.)

Other specific terminal problems may be corrected by adding more capabilities of the form xx.

Similar Terminals
If there are two very similar terminals, one can be defined as being just like the other with certain

exceptions. The string capability tc can be given with the name of the similar terminal. This capability

must be last, and the combined length of the entries must not exceed 1024. The capabilities given before

tc override those in the terminal type invoked by tc. A capability can be canceled by placing xx@ to the

left of the tc invocation, where xx is the capability. For example, the entry

hn|2621-nl:ks@:ke@:tc=2621:

defines a "2621-nl" that does not have the ks or ke capabilities, hence does not turn on the function key

labels when in visual mode. This is useful for different modes for a terminal, or for different user

preferences.

FILES
/usr/share/misc/termcap File containing terminal descriptions.

/usr/share/misc/termcap.db Hash database file containing terminal descriptions (see cap_mkdb(1)).

SEE ALSO
cap_mkdb(1), ex(1), more(1), tset(1), ul(1), vi(1), xterm(1) (ports/x11/xterm), ncurses(3), printf(3),

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

termcap(3), term(5)

CAVEATS AND BUGS
The Note: termcap functions were replaced by terminfo(5) in AT&T System V UNIX Release 2.0. The

transition will be relatively painless if capabilities flagged as "obsolete" are avoided.

Lines and columns are now stored by the kernel as well as in the termcap entry. Most programs now use

the kernel information primarily; the information in this file is used only if the kernel does not have any

information.

The vi(1) program allows only 256 characters for string capabilities, and the routines in termlib(3) do

not check for overflow of this buffer. The total length of a single entry (excluding only escaped

newlines) may not exceed 1024.

Not all programs support all entries.

HISTORY
The termcap file format appeared in 3BSD.

TERMCAP(5) FreeBSD File Formats Manual TERMCAP(5)

FreeBSD 14.0-RELEASE-p11 December 13, 2009 FreeBSD 14.0-RELEASE-p11

