
NAME
terminfo - terminal capability data base

SYNOPSIS
/usr/share/misc/terminfo/*/*

DESCRIPTION
Terminfo is a data base describing terminals, used by screen-oriented programs such as nvi(1), lynx(1),

mutt(1), and other curses applications, using high-level calls to libraries such as curses(3X). It is also

used via low-level calls by non-curses applications which may be screen-oriented (such as clear(1)) or

non-screen (such as tabs(1)).

Terminfo describes terminals by giving a set of capabilities which they have, by specifying how to

perform screen operations, and by specifying padding requirements and initialization sequences.

This manual describes ncurses version 6.2 (patch 20210220).

Terminfo Entry Syntax
Entries in terminfo consist of a sequence of fields:

+o Each field ends with a comma "," (embedded commas may be escaped with a backslash or written

as "\054").

+o White space between fields is ignored.

+o The first field in a terminfo entry begins in the first column.

+o Newlines and leading whitespace (spaces or tabs) may be used for formatting entries for

readability. These are removed from parsed entries.

The infocmp -f and -W options rely on this to format if-then-else expressions, or to enforce

maximum line-width. The resulting formatted terminal description can be read by tic.

+o The first field for each terminal gives the names which are known for the terminal, separated by

"|" characters.

The first name given is the most common abbreviation for the terminal (its primary name), the last

name given should be a long name fully identifying the terminal (see longname(3X)), and all

others are treated as synonyms (aliases) for the primary terminal name.

terminfo(5) File Formats terminfo(5)

terminfo(5)

X/Open Curses advises that all names but the last should be in lower case and contain no blanks;

the last name may well contain upper case and blanks for readability.

This implementation is not so strict; it allows mixed case in the primary name and aliases. If the

last name has no embedded blanks, it allows that to be both an alias and a verbose name (but will

warn about this ambiguity).

+o Lines beginning with a "#" in the first column are treated as comments.

While comment lines are legal at any point, the output of captoinfo and infotocap (aliases for tic)

will move comments so they occur only between entries.

Terminal names (except for the last, verbose entry) should be chosen using the following conventions.

The particular piece of hardware making up the terminal should have a root name, thus "hp2621". This

name should not contain hyphens. Modes that the hardware can be in, or user preferences, should be

indicated by appending a hyphen and a mode suffix. Thus, a vt100 in 132-column mode would be

vt100-w. The following suffixes should be used where possible:

Suffix Meaning Example
-nn Number of lines on the aaa-60

screen

-np Number of pages of c100-4p

memory

-am With automargins (usually the vt100-am

default)

-m Mono mode; suppress color ansi-m

-mc Magic cookie; spaces when highlightingwy30-mc

-na No arrow keys (leave them in c100-na

local)

-nam Without automatic margins vt100-nam

-nl No status line att4415-nl

-ns No status line hp2626-ns

-rv Reverse video c100-rv

-s Enable status line vt100-s

-vb Use visible bell instead of wy370-vb

beep

-w Wide mode (> 80 columns, usually vt100-w

132)

For more on terminal naming conventions, see the term(7) manual page.

terminfo(5) File Formats terminfo(5)

terminfo(5)

Terminfo Capabilities Syntax
The terminfo entry consists of several capabilities, i.e., features that the terminal has, or methods for

exercising the terminal’s features.

After the first field (giving the name(s) of the terminal entry), there should be one or more capability

fields. These are boolean, numeric or string names with corresponding values:

+o Boolean capabilities are true when present, false when absent. There is no explicit value for

boolean capabilities.

+o Numeric capabilities have a "#" following the name, then an unsigned decimal integer value.

+o String capabilities have a "=" following the name, then an string of characters making up the

capability value.

String capabilities can be split into multiple lines, just as the fields comprising a terminal entry can

be split into multiple lines. While blanks between fields are ignored, blanks embedded within a

string value are retained, except for leading blanks on a line.

Any capability can be canceled, i.e., suppressed from the terminal entry, by following its name with

"@" rather than a capability value.

Similar Terminals
If there are two very similar terminals, one (the variant) can be defined as being just like the other (the

base) with certain exceptions. In the definition of the variant, the string capability use can be given

with the name of the base terminal:

+o The capabilities given before use override those in the base type named by use.

+o If there are multiple use capabilities, they are merged in reverse order. That is, the rightmost use
reference is processed first, then the one to its left, and so forth.

+o Capabilities given explicitly in the entry override those brought in by use references.

A capability can be canceled by placing xx@ to the left of the use reference that imports it, where xx is

the capability. For example, the entry

2621-nl, smkx@, rmkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does not turn on the

terminfo(5) File Formats terminfo(5)

terminfo(5)

function key labels when in visual mode. This is useful for different modes for a terminal, or for

different user preferences.

An entry included via use can contain canceled capabilities, which have the same effect as if those

cancels were inline in the using terminal entry.

Predefined Capabilities
The following is a complete table of the capabilities included in a terminfo description block and

available to terminfo-using code. In each line of the table,

The variable is the name by which the programmer (at the terminfo level) accesses the capability.

The capname is the short name used in the text of the database, and is used by a person updating the

database. Whenever possible, capnames are chosen to be the same as or similar to the ANSI

X3.64-1979 standard (now superseded by ECMA-48, which uses identical or very similar names).

Semantics are also intended to match those of the specification.

The termcap code is the old termcap capability name (some capabilities are new, and have names

which termcap did not originate).

Capability names have no hard length limit, but an informal limit of 5 characters has been adopted to

keep them short and to allow the tabs in the source file Caps to line up nicely.

Finally, the description field attempts to convey the semantics of the capability. You may find some

codes in the description field:

(P) indicates that padding may be specified

#[1-9]

in the description field indicates that the string is passed through tparm(3X) with parameters as

given (#i).

If no parameters are listed in the description, passing the string through tparm(3X) may give

unexpected results, e.g., if it contains percent (%%) signs.

(P*)

indicates that padding may vary in proportion to the number of lines affected

(#i) indicates the ith parameter.

terminfo(5) File Formats terminfo(5)

terminfo(5)

These are the boolean capabilities:

Variable Cap- TCap Description
Booleans name Code

auto_left_margin bw bw cub1 wraps from

column 0 to last column

auto_right_margin am am terminal has automatic

margins

back_color_erase bce ut screen erased with

background color

can_change ccc cc terminal can re-define

existing colors

ceol_standout_glitch xhp xs standout not erased by

overwriting (hp)

col_addr_glitch xhpa YA only positive motion for

hpa/mhpa caps

cpi_changes_res cpix YF changing character pitch

changes resolution

cr_cancels_micro_mode crxm YB using cr turns off micro

mode

dest_tabs_magic_smso xt xt tabs destructive, magic

so char (t1061)

eat_newline_glitch xenl xn newline ignored after 80

cols (concept)

erase_overstrike eo eo can erase overstrikes

with a blank

generic_type gn gn generic line

type

hard_copy hc hc hardcopy

terminal

hard_cursor chts HC cursor is hard to

see

has_meta_key km km Has a meta key (i.e., sets

8th-bit)

has_print_wheel daisy YC printer needs operator to

change character set

has_status_line hs hs has extra status

line

hue_lightness_saturation hls hl terminal uses only HLS

terminfo(5) File Formats terminfo(5)

terminfo(5)

color notation

(Tektronix)

insert_null_glitch in in insert mode

distinguishes nulls

lpi_changes_res lpix YG changing line pitch

changes resolution

memory_above da da display may be retained

above the screen

memory_below db db display may be retained

below the screen

move_insert_mode mir mi safe to move while in

insert mode

move_standout_mode msgr ms safe to move while in

standout mode

needs_xon_xoff nxon nx padding will not work,

xon/xoff required

no_esc_ctlc xsb xb beehive (f1=escape,

f2=ctrl C)

no_pad_char npc NP pad character does not

exist

non_dest_scroll_region ndscr ND scrolling region is

non-destructive

non_rev_rmcup nrrmc NR smcup does not reverse

rmcup

over_strike os os terminal can

overstrike

prtr_silent mc5i 5i printer will not echo on

screen

row_addr_glitch xvpa YD only positive motion for

vpa/mvpa caps

semi_auto_right_margin sam YE printing in last column

causes cr

status_line_esc_ok eslok es escape can be used on

the status line

tilde_glitch hz hz cannot print ~’s

(Hazeltine)

transparent_underline ul ul underline character

overstrikes

xon_xoff xon xo terminal uses xon/xoff

handshaking

terminfo(5) File Formats terminfo(5)

terminfo(5)

These are the numeric capabilities:

Variable Cap- TCap Description
Numeric name Code

columns cols co number of columns in a

line

init_tabs it it tabs initially every #

spaces

label_height lh lh rows in each

label

label_width lw lw columns in each

label

lines lines li number of lines on

screen or page

lines_of_memory lm lm lines of memory if >

line. 0 means varies

magic_cookie_glitch xmc sg number of blank

characters left by smso

or rmso

max_attributes ma ma maximum combined

attributes terminal can

handle

max_colors colors Co maximum number of

colors on screen

max_pairs pairs pa maximum number of

color-pairs on the screen

maximum_windows wnum MW maximum number of

definable windows

no_color_video ncv NC video attributes that

cannot be used with

colors

num_labels nlab Nl number of labels on

screen

padding_baud_rate pb pb lowest baud rate where

padding needed

virtual_terminal vt vt virtual terminal number

(CB/unix)

width_status_line wsl ws number of columns in

status line

terminfo(5) File Formats terminfo(5)

terminfo(5)

The following numeric capabilities are present in the SVr4.0 term structure, but are not yet documented

in the man page. They came in with SVr4’s printer support.

Variable Cap- TCap Description
Numeric name Code

bit_image_entwining bitwin Yo number of passes for

each bit-image row

bit_image_type bitype Yp type of bit-image

device

buffer_capacity bufsz Ya numbers of bytes

buffered before printing

buttons btns BT number of buttons on

mouse

dot_horz_spacing spinh Yc spacing of dots

horizontally in dots per

inch

dot_vert_spacing spinv Yb spacing of pins

vertically in pins per

inch

max_micro_address maddr Yd maximum value in

micro_..._address

max_micro_jump mjump Ye maximum value in

parm_..._micro

micro_col_size mcs Yf character step size when

in micro mode

micro_line_size mls Yg line step size when in

micro mode

number_of_pins npins Yh numbers of pins in

print-head

output_res_char orc Yi horizontal resolution in

units per line

output_res_horz_inch orhi Yk horizontal resolution in

units per inch

output_res_line orl Yj vertical resolution in

units per line

output_res_vert_inch orvi Yl vertical resolution in

units per inch

print_rate cps Ym print rate in characters

per second

terminfo(5) File Formats terminfo(5)

terminfo(5)

wide_char_size widcs Yn character step size when

in double wide mode

These are the string capabilities:

Variable Cap- TCap Description
String name Code

acs_chars acsc ac graphics charset pairs,

based on vt100

back_tab cbt bt back tab

(P)

bell bel bl audible signal (bell)

(P)

carriage_return cr cr carriage return (P*)

(P*)

change_char_pitch cpi ZA Change number of

characters per inch to #1

change_line_pitch lpi ZB Change number of lines

per inch to #1

change_res_horz chr ZC Change horizontal

resolution to #1

change_res_vert cvr ZD Change vertical

resolution to #1

change_scroll_region csr cs change region to line #1

to line #2 (P)

char_padding rmp rP like ip but when in insert

mode

clear_all_tabs tbc ct clear all tab stops

(P)

clear_margins mgc MC clear right and left soft

margins

clear_screen clear cl clear screen and home

cursor (P*)

clr_bol el1 cb Clear to beginning of

line

clr_eol el ce clear to end of line

(P)

clr_eos ed cd clear to end of screen

(P*)

terminfo(5) File Formats terminfo(5)

terminfo(5)

column_address hpa ch horizontal position #1,

absolute (P)

command_character cmdch CC terminal settable cmd

character in prototype !?

create_window cwin CW define a window #1

from #2,#3 to #4,#5

cursor_address cup cm move to row #1 columns

#2

cursor_down cud1 do down one

line

cursor_home home ho home cursor (if no

cup)

cursor_invisible civis vi make cursor

invisible

cursor_left cub1 le move left one

space

cursor_mem_address mrcup CM memory relative cursor

addressing, move to row

#1 columns #2

cursor_normal cnorm ve make cursor appear

normal (undo

civis/cvvis)

cursor_right cuf1 nd non-destructive space

(move right one space)

cursor_to_ll ll ll last line, first column (if

no cup)

cursor_up cuu1 up up one

line

cursor_visible cvvis vs make cursor very

visible

define_char defc ZE Define a character #1,

#2 dots wide, descender

#3

delete_character dch1 dc delete character

(P*)

delete_line dl1 dl delete line

(P*)

dial_phone dial DI dial number

#1

dis_status_line dsl ds disable status

terminfo(5) File Formats terminfo(5)

terminfo(5)

line

display_clock dclk DK display

clock

down_half_line hd hd half a line

down

ena_acs enacs eA enable alternate char

set

enter_alt_charset_mode smacs as start alternate character

set (P)

enter_am_mode smam SA turn on automatic

margins

enter_blink_mode blink mb turn on

blinking

enter_bold_mode bold md turn on bold (extra

bright) mode

enter_ca_mode smcup ti string to start programs

using cup

enter_delete_mode smdc dm enter delete

mode

enter_dim_mode dim mh turn on half-bright

mode

enter_doublewide_mode swidm ZF Enter double-wide

mode

enter_draft_quality sdrfq ZG Enter draft-quality

mode

enter_insert_mode smir im enter insert

mode

enter_italics_mode sitm ZH Enter italic

mode

enter_leftward_mode slm ZI Start leftward carriage

motion

enter_micro_mode smicm ZJ Start micro-motion

mode

enter_near_letter_quality snlq ZK Enter NLQ

mode

enter_normal_quality snrmq ZL Enter normal-quality

mode

enter_protected_mode prot mp turn on protected

mode

enter_reverse_mode rev mr turn on reverse video

terminfo(5) File Formats terminfo(5)

terminfo(5)

mode

enter_secure_mode invis mk turn on blank mode

(characters invisible)

enter_shadow_mode sshm ZM Enter shadow-print

mode

enter_standout_mode smso so begin standout

mode

enter_subscript_mode ssubm ZN Enter subscript

mode

enter_superscript_mode ssupm ZO Enter superscript

mode

enter_underline_mode smul us begin underline

mode

enter_upward_mode sum ZP Start upward carriage

motion

enter_xon_mode smxon SX turn on xon/xoff

handshaking

erase_chars ech ec erase #1 characters

(P)

exit_alt_charset_mode rmacs ae end alternate character

set (P)

exit_am_mode rmam RA turn off automatic

margins

exit_attribute_mode sgr0 me turn off all

attributes

exit_ca_mode rmcup te strings to end programs

using cup

exit_delete_mode rmdc ed end delete

mode

exit_doublewide_mode rwidm ZQ End double-wide

mode

exit_insert_mode rmir ei exit insert

mode

exit_italics_mode ritm ZR End italic

mode

exit_leftward_mode rlm ZS End left-motion

mode

exit_micro_mode rmicm ZT End micro-motion

mode

exit_shadow_mode rshm ZU End shadow-print

terminfo(5) File Formats terminfo(5)

terminfo(5)

mode

exit_standout_mode rmso se exit standout

mode

exit_subscript_mode rsubm ZV End subscript

mode

exit_superscript_mode rsupm ZW End superscript

mode

exit_underline_mode rmul ue exit underline

mode

exit_upward_mode rum ZX End reverse character

motion

exit_xon_mode rmxon RX turn off xon/xoff

handshaking

fixed_pause pause PA pause for 2-3

seconds

flash_hook hook fh flash switch

hook

flash_screen flash vb visible bell (may not

move cursor)

form_feed ff ff hardcopy terminal page

eject (P*)

from_status_line fsl fs return from status

line

goto_window wingo WG go to window #1

hangup hup HU hang-up

phone

init_1string is1 i1 initialization

string

init_2string is2 is initialization

string

init_3string is3 i3 initialization

string

init_file if if name of initialization

file

init_prog iprog iP path name of program

for initialization

initialize_color initc Ic initialize color #1 to

(#2,#3,#4)

initialize_pair initp Ip Initialize color pair #1 to

fg=(#2,#3,#4),

terminfo(5) File Formats terminfo(5)

terminfo(5)

bg=(#5,#6,#7)

insert_character ich1 ic insert character

(P)

insert_line il1 al insert line

(P*)

insert_padding ip ip insert padding after

inserted character

key_a1 ka1 K1 upper left of

keypad

key_a3 ka3 K3 upper right of

keypad

key_b2 kb2 K2 center of

keypad

key_backspace kbs kb backspace

key

key_beg kbeg @1 begin

key

key_btab kcbt kB back-tab

key

key_c1 kc1 K4 lower left of

keypad

key_c3 kc3 K5 lower right of

keypad

key_cancel kcan @2 cancel

key

key_catab ktbc ka clear-all-tabs

key

key_clear kclr kC clear-screen or erase

key

key_close kclo @3 close

key

key_command kcmd @4 command

key

key_copy kcpy @5 copy

key

key_create kcrt @6 create

key

key_ctab kctab kt clear-tab

key

key_dc kdch1 kD delete-character

terminfo(5) File Formats terminfo(5)

terminfo(5)

key

key_dl kdl1 kL delete-line

key

key_down kcud1 kd down-arrow

key

key_eic krmir kM sent by rmir or smir in

insert mode

key_end kend @7 end

key

key_enter kent @8 enter/send

key

key_eol kel kE clear-to-end-of-line

key

key_eos ked kS clear-to-end-of-screen

key

key_exit kext @9 exit

key

key_f0 kf0 k0 F0 function

key

key_f1 kf1 k1 F1 function

key

key_f10 kf10 k; F10 function

key

key_f11 kf11 F1 F11 function

key

key_f12 kf12 F2 F12 function

key

key_f13 kf13 F3 F13 function

key

key_f14 kf14 F4 F14 function

key

key_f15 kf15 F5 F15 function

key

key_f16 kf16 F6 F16 function

key

key_f17 kf17 F7 F17 function

key

key_f18 kf18 F8 F18 function

key

key_f19 kf19 F9 F19 function

terminfo(5) File Formats terminfo(5)

terminfo(5)

key

key_f2 kf2 k2 F2 function

key

key_f20 kf20 FA F20 function

key

key_f21 kf21 FB F21 function

key

key_f22 kf22 FC F22 function

key

key_f23 kf23 FD F23 function

key

key_f24 kf24 FE F24 function

key

key_f25 kf25 FF F25 function

key

key_f26 kf26 FG F26 function

key

key_f27 kf27 FH F27 function

key

key_f28 kf28 FI F28 function

key

key_f29 kf29 FJ F29 function

key

key_f3 kf3 k3 F3 function

key

key_f30 kf30 FK F30 function

key

key_f31 kf31 FL F31 function

key

key_f32 kf32 FM F32 function

key

key_f33 kf33 FN F33 function

key

key_f34 kf34 FO F34 function

key

key_f35 kf35 FP F35 function

key

key_f36 kf36 FQ F36 function

key

key_f37 kf37 FR F37 function

terminfo(5) File Formats terminfo(5)

terminfo(5)

key

key_f38 kf38 FS F38 function

key

key_f39 kf39 FT F39 function

key

key_f4 kf4 k4 F4 function

key

key_f40 kf40 FU F40 function

key

key_f41 kf41 FV F41 function

key

key_f42 kf42 FW F42 function

key

key_f43 kf43 FX F43 function

key

key_f44 kf44 FY F44 function

key

key_f45 kf45 FZ F45 function

key

key_f46 kf46 Fa F46 function

key

key_f47 kf47 Fb F47 function

key

key_f48 kf48 Fc F48 function

key

key_f49 kf49 Fd F49 function

key

key_f5 kf5 k5 F5 function

key

key_f50 kf50 Fe F50 function

key

key_f51 kf51 Ff F51 function

key

key_f52 kf52 Fg F52 function

key

key_f53 kf53 Fh F53 function

key

key_f54 kf54 Fi F54 function

key

key_f55 kf55 Fj F55 function

terminfo(5) File Formats terminfo(5)

terminfo(5)

key

key_f56 kf56 Fk F56 function

key

key_f57 kf57 Fl F57 function

key

key_f58 kf58 Fm F58 function

key

key_f59 kf59 Fn F59 function

key

key_f6 kf6 k6 F6 function

key

key_f60 kf60 Fo F60 function

key

key_f61 kf61 Fp F61 function

key

key_f62 kf62 Fq F62 function

key

key_f63 kf63 Fr F63 function

key

key_f7 kf7 k7 F7 function

key

key_f8 kf8 k8 F8 function

key

key_f9 kf9 k9 F9 function

key

key_find kfnd @0 find

key

key_help khlp %1 help

key

key_home khome kh home

key

key_ic kich1 kI insert-character

key

key_il kil1 kA insert-line

key

key_left kcub1 kl left-arrow

key

key_ll kll kH lower-left key (home

down)

key_mark kmrk %2 mark

terminfo(5) File Formats terminfo(5)

terminfo(5)

key

key_message kmsg %3 message

key

key_move kmov %4 move

key

key_next knxt %5 next

key

key_npage knp kN next-page

key

key_open kopn %6 open

key

key_options kopt %7 options

key

key_ppage kpp kP previous-page

key

key_previous kprv %8 previous

key

key_print kprt %9 print

key

key_redo krdo %0 redo

key

key_reference kref &1 reference

key

key_refresh krfr &2 refresh

key

key_replace krpl &3 replace

key

key_restart krst &4 restart

key

key_resume kres &5 resume

key

key_right kcuf1 kr right-arrow

key

key_save ksav &6 save

key

key_sbeg kBEG &9 shifted begin

key

key_scancel kCAN &0 shifted cancel

key

key_scommand kCMD *1 shifted command

terminfo(5) File Formats terminfo(5)

terminfo(5)

key

key_scopy kCPY *2 shifted copy

key

key_screate kCRT *3 shifted create

key

key_sdc kDC *4 shifted delete-character

key

key_sdl kDL *5 shifted delete-line

key

key_select kslt *6 select

key

key_send kEND *7 shifted end

key

key_seol kEOL *8 shifted

clear-to-end-of-line key

key_sexit kEXT *9 shifted exit

key

key_sf kind kF scroll-forward

key

key_sfind kFND *0 shifted find

key

key_shelp kHLP #1 shifted help

key

key_shome kHOM #2 shifted home

key

key_sic kIC #3 shifted insert-character

key

key_sleft kLFT #4 shifted left-arrow

key

key_smessage kMSG %a shifted message

key

key_smove kMOV %b shifted move

key

key_snext kNXT %c shifted next

key

key_soptions kOPT %d shifted options

key

key_sprevious kPRV %e shifted previous

key

key_sprint kPRT %f shifted print

terminfo(5) File Formats terminfo(5)

terminfo(5)

key

key_sr kri kR scroll-backward

key

key_sredo kRDO %g shifted redo

key

key_sreplace kRPL %h shifted replace

key

key_sright kRIT %i shifted right-arrow

key

key_srsume kRES %j shifted resume

key

key_ssave kSAV !1 shifted save

key

key_ssuspend kSPD !2 shifted suspend

key

key_stab khts kT set-tab

key

key_sundo kUND !3 shifted undo

key

key_suspend kspd &7 suspend

key

key_undo kund &8 undo

key

key_up kcuu1 ku up-arrow

key

keypad_local rmkx ke leave

’keyboard_transmit’

mode

keypad_xmit smkx ks enter

’keyboard_transmit’

mode

lab_f0 lf0 l0 label on function key f0

if not f0

lab_f1 lf1 l1 label on function key f1

if not f1

lab_f10 lf10 la label on function key

f10 if not f10

lab_f2 lf2 l2 label on function key f2

if not f2

lab_f3 lf3 l3 label on function key f3

terminfo(5) File Formats terminfo(5)

terminfo(5)

if not f3

lab_f4 lf4 l4 label on function key f4

if not f4

lab_f5 lf5 l5 label on function key f5

if not f5

lab_f6 lf6 l6 label on function key f6

if not f6

lab_f7 lf7 l7 label on function key f7

if not f7

lab_f8 lf8 l8 label on function key f8

if not f8

lab_f9 lf9 l9 label on function key f9

if not f9

label_format fln Lf label

format

label_off rmln LF turn off soft

labels

label_on smln LO turn on soft

labels

meta_off rmm mo turn off meta

mode

meta_on smm mm turn on meta mode

(8th-bit on)

micro_column_address mhpa ZY Like column_address in

micro mode

micro_down mcud1 ZZ Like cursor_down in

micro mode

micro_left mcub1 Za Like cursor_left in

micro mode

micro_right mcuf1 Zb Like cursor_right in

micro mode

micro_row_address mvpa Zc Like row_address #1 in

micro mode

micro_up mcuu1 Zd Like cursor_up in micro

mode

newline nel nw newline (behave like cr

followed by lf)

order_of_pins porder Ze Match software bits to

print-head pins

orig_colors oc oc Set all color pairs to the

terminfo(5) File Formats terminfo(5)

terminfo(5)

original ones

orig_pair op op Set default pair to its

original value

pad_char pad pc padding char (instead of

null)

parm_dch dch DC delete #1 characters

(P*)

parm_delete_line dl DL delete #1 lines

(P*)

parm_down_cursor cud DO down #1 lines

(P*)

parm_down_micro mcud Zf Like parm_down_cursor

in micro mode

parm_ich ich IC insert #1 characters

(P*)

parm_index indn SF scroll forward #1 lines

(P)

parm_insert_line il AL insert #1 lines

(P*)

parm_left_cursor cub LE move #1 characters to

the left (P)

parm_left_micro mcub Zg Like parm_left_cursor in

micro mode

parm_right_cursor cuf RI move #1 characters to

the right (P*)

parm_right_micro mcuf Zh Like parm_right_cursor

in micro mode

parm_rindex rin SR scroll back #1 lines

(P)

parm_up_cursor cuu UP up #1 lines

(P*)

parm_up_micro mcuu Zi Like parm_up_cursor in

micro mode

pkey_key pfkey pk program function key #1

to type string #2

pkey_local pfloc pl program function key #1

to execute string #2

pkey_xmit pfx px program function key #1

to transmit string #2

plab_norm pln pn program label #1 to

terminfo(5) File Formats terminfo(5)

terminfo(5)

show string #2

print_screen mc0 ps print contents of

screen

prtr_non mc5p pO turn on printer for #1

bytes

prtr_off mc4 pf turn off

printer

prtr_on mc5 po turn on

printer

pulse pulse PU select pulse

dialing

quick_dial qdial QD dial number #1 without

checking

remove_clock rmclk RC remove

clock

repeat_char rep rp repeat char #1 #2 times

(P*)

req_for_input rfi RF send next input char (for

ptys)

reset_1string rs1 r1 reset

string

reset_2string rs2 r2 reset

string

reset_3string rs3 r3 reset

string

reset_file rf rf name of reset

file

restore_cursor rc rc restore cursor to position

of last save_cursor

row_address vpa cv vertical position #1

absolute (P)

save_cursor sc sc save current cursor

position (P)

scroll_forward ind sf scroll text up

(P)

scroll_reverse ri sr scroll text down

(P)

select_char_set scs Zj Select character set,

#1

set_attributes sgr sa define video attributes

terminfo(5) File Formats terminfo(5)

terminfo(5)

#1-#9 (PG9)

set_background setb Sb Set background color

#1

set_bottom_margin smgb Zk Set bottom margin at

current line

set_bottom_margin_parm smgbp Zl Set bottom margin at

line #1 or (if smgtp is

not given) #2 lines from

bottom

set_clock sclk SC set clock, #1 hrs #2 mins

#3 secs

set_color_pair scp sp Set current color pair to

#1

set_foreground setf Sf Set foreground color

#1

set_left_margin smgl ML set left soft margin at

current column. See

smgl. (ML is not in BSD

termcap).

set_left_margin_parm smglp Zm Set left (right) margin at

column #1

set_right_margin smgr MR set right soft margin at

current column

set_right_margin_parm smgrp Zn Set right margin at

column #1

set_tab hts st set a tab in every row,

current columns

set_top_margin smgt Zo Set top margin at current

line

set_top_margin_parm smgtp Zp Set top (bottom) margin

at row #1

set_window wind wi current window is lines

#1-#2 cols #3-#4

start_bit_image sbim Zq Start printing bit image

graphics

start_char_set_def scsd Zr Start character set

definition #1, with #2

characters in the set

stop_bit_image rbim Zs Stop printing bit image

graphics

terminfo(5) File Formats terminfo(5)

terminfo(5)

stop_char_set_def rcsd Zt End definition of

character set #1

subscript_characters subcs Zu List of subscriptable

characters

superscript_characters supcs Zv List of superscriptable

characters

tab ht ta tab to next 8-space

hardware tab stop

these_cause_cr docr Zw Printing any of these

characters causes CR

to_status_line tsl ts move to status line,

column #1

tone tone TO select touch tone

dialing

underline_char uc uc underline char and move

past it

up_half_line hu hu half a line

up

user0 u0 u0 User string

#0

user1 u1 u1 User string

#1

user2 u2 u2 User string

#2

user3 u3 u3 User string

#3

user4 u4 u4 User string

#4

user5 u5 u5 User string

#5

user6 u6 u6 User string

#6

user7 u7 u7 User string

#7

user8 u8 u8 User string

#8

user9 u9 u9 User string

#9

wait_tone wait WA wait for

dial-tone

terminfo(5) File Formats terminfo(5)

terminfo(5)

xoff_character xoffc XF XOFF

character

xon_character xonc XN XON

character

zero_motion zerom Zx No motion for

subsequent character

The following string capabilities are present in the SVr4.0 term structure, but were originally not

documented in the man page.

Variable Cap- TCap Description
String name Code

alt_scancode_esc scesa S8 Alternate escape for

scancode emulation

bit_image_carriage_return bicr Yv Move to beginning of

same row

bit_image_newline binel Zz Move to next row of

the bit image

bit_image_repeat birep Xy Repeat bit image cell

#1 #2 times

char_set_names csnm Zy Produce #1’th item

from list of character

set names

code_set_init csin ci Init sequence for

multiple codesets

color_names colornm Yw Give name for color

#1

define_bit_image_region defbi Yx Define rectangular bit

image region

device_type devt dv Indicate

language/codeset

support

display_pc_char dispc S1 Display PC character

#1

end_bit_image_region endbi Yy End a bit-image

region

enter_pc_charset_mode smpch S2 Enter PC character

display mode

enter_scancode_mode smsc S4 Enter PC scancode

terminfo(5) File Formats terminfo(5)

terminfo(5)

mode

exit_pc_charset_mode rmpch S3 Exit PC character

display mode

exit_scancode_mode rmsc S5 Exit PC scancode

mode

get_mouse getm Gm Curses should get

button events,

parameter #1 not

documented.

key_mouse kmous Km Mouse event has

occurred

mouse_info minfo Mi Mouse status

information

pc_term_options pctrm S6 PC terminal

options

pkey_plab pfxl xl Program function key

#1 to type string #2

and show string #3

req_mouse_pos reqmp RQ Request mouse

position

scancode_escape scesc S7 Escape for scancode

emulation

set0_des_seq s0ds s0 Shift to codeset 0

(EUC set 0, ASCII)

set1_des_seq s1ds s1 Shift to codeset

1

set2_des_seq s2ds s2 Shift to codeset

2

set3_des_seq s3ds s3 Shift to codeset

3

set_a_background setab AB Set background color

to #1, using ANSI

escape

set_a_foreground setaf AF Set foreground color

to #1, using ANSI

escape

set_color_band setcolor Yz Change to ribbon

color #1

set_lr_margin smglr ML Set both left and right

margins to #1, #2.

terminfo(5) File Formats terminfo(5)

terminfo(5)

(ML is not in BSD

termcap).

set_page_length slines YZ Set page length to #1

lines

set_tb_margin smgtb MT Sets both top and

bottom margins to #1,

#2

The XSI Curses standard added these hardcopy capabilities. They were used in some post-4.1

versions of System V curses, e.g., Solaris 2.5 and IRIX 6.x. Except for YI, the ncurses
termcap names for them are invented. According to the XSI Curses standard, they have no

termcap names. If your compiled terminfo entries use these, they may not be binary-

compatible with System V terminfo entries after SVr4.1; beware!

Variable Cap- TCap Description
String name Code

enter_horizontal_hl_mode ehhlm Xh Enter horizontal

highlight mode

enter_left_hl_mode elhlm Xl Enter left highlight

mode

enter_low_hl_mode elohlm Xo Enter low highlight

mode

enter_right_hl_mode erhlm Xr Enter right highlight

mode

enter_top_hl_mode ethlm Xt Enter top highlight

mode

enter_vertical_hl_mode evhlm Xv Enter vertical highlight

mode

set_a_attributes sgr1 sA Define second set of

video attributes #1-#6

set_pglen_inch slength YI Set page length to #1

hundredth of an inch

(some implementations

use sL for termcap).

User-Defined Capabilities
The preceding section listed the predefined capabilities. They deal with some special features for

terminals no longer (or possibly never) produced. Occasionally there are special features of newer

terminals which are awkward or impossible to represent by reusing the predefined capabilities.

terminfo(5) File Formats terminfo(5)

terminfo(5)

ncurses addresses this limitation by allowing user-defined capabilities. The tic and infocmp programs

provide the -x option for this purpose. When -x is set, tic treats unknown capabilities as user-defined.

That is, if tic encounters a capability name which it does not recognize, it infers its type (boolean,

number or string) from the syntax and makes an extended table entry for that capability. The

use_extended_names(3X) function makes this information conditionally available to applications. The

ncurses library provides the data leaving most of the behavior to applications:

+o User-defined capability strings whose name begins with "k" are treated as function keys.

+o The types (boolean, number, string) determined by tic can be inferred by successful calls on

tigetflag, etc.

+o If the capability name happens to be two characters, the capability is also available through the

termcap interface.

While termcap is said to be extensible because it does not use a predefined set of capabilities, in

practice it has been limited to the capabilities defined by terminfo implementations. As a rule, user-

defined capabilities intended for use by termcap applications should be limited to booleans and

numbers to avoid running past the 1023 byte limit assumed by termcap implementations and their

applications. In particular, providing extended sets of function keys (past the 60 numbered keys and

the handful of special named keys) is best done using the longer names available using terminfo.

A Sample Entry
The following entry, describing an ANSI-standard terminal, is representative of what a terminfo entry

for a modern terminal typically looks like.

ansi|ansi/pc-term compatible with color,

am, mc5i, mir, msgr,

colors#8, cols#80, it#8, lines#24, ncv#3, pairs#64,

acsc=+\020\,\021-\030.^Y0\333‘\004a\261f\370g\361h\260

j\331k\277l\332m\300n\305o~p\304q\304r\304s_t\303

u\264v\301w\302x\263y\363z\362{\343|\330}\234~\376,

bel=^G, blink=\E[5m, bold=\E[1m, cbt=\E[Z, clear=\E[H\E[J,

cr=^M, cub=\E[%p1%dD, cub1=\E[D, cud=\E[%p1%dB, cud1=\E[B,

cuf=\E[%p1%dC, cuf1=\E[C, cup=\E[%i%p1%d;%p2%dH,

cuu=\E[%p1%dA, cuu1=\E[A, dch=\E[%p1%dP, dch1=\E[P,

dl=\E[%p1%dM, dl1=\E[M, ech=\E[%p1%dX, ed=\E[J, el=\E[K,

el1=\E[1K, home=\E[H, hpa=\E[%i%p1%dG, ht=\E[I, hts=\EH,

ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=^J,

indn=\E[%p1%dS, invis=\E[8m, kbs=^H, kcbt=\E[Z, kcub1=\E[D,

terminfo(5) File Formats terminfo(5)

terminfo(5)

kcud1=\E[B, kcuf1=\E[C, kcuu1=\E[A, khome=\E[H, kich1=\E[L,

mc4=\E[4i, mc5=\E[5i, nel=\r\E[S, op=\E[39;49m,

rep=%p1%c\E[%p2%{1}%-%db, rev=\E[7m, rin=\E[%p1%dT,

rmacs=\E[10m, rmpch=\E[10m, rmso=\E[m, rmul=\E[m,

s0ds=\E(B, s1ds=\E)B, s2ds=\E*B, s3ds=\E+B,

setab=\E[4%p1%dm, setaf=\E[3%p1%dm,

sgr=\E[0;10%?%p1%t;7%;

%?%p2%t;4%;

%?%p3%t;7%;

%?%p4%t;5%;

%?%p6%t;1%;

%?%p7%t;8%;

%?%p9%t;11%;m,

sgr0=\E[0;10m, smacs=\E[11m, smpch=\E[11m, smso=\E[7m,

smul=\E[4m, tbc=\E[3g, u6=\E[%i%d;%dR, u7=\E[6n,

u8=\E[?%[;0123456789]c, u9=\E[c, vpa=\E[%i%p1%dd,

Entries may continue onto multiple lines by placing white space at the beginning of each line except

the first. Comments may be included on lines beginning with "#". Capabilities in terminfo are of three

types:

+o Boolean capabilities which indicate that the terminal has some particular feature,

+o numeric capabilities giving the size of the terminal or the size of particular delays, and

+o string capabilities, which give a sequence which can be used to perform particular terminal

operations.

Types of Capabilities
All capabilities have names. For instance, the fact that ANSI-standard terminals have automatic

margins (i.e., an automatic return and line-feed when the end of a line is reached) is indicated by the

capability am. Hence the description of ansi includes am. Numeric capabilities are followed by the

character "#" and then a positive value. Thus cols, which indicates the number of columns the terminal

has, gives the value "80" for ansi. Values for numeric capabilities may be specified in decimal, octal or

hexadecimal, using the C programming language conventions (e.g., 255, 0377 and 0xff or 0xFF).

Finally, string valued capabilities, such as el (clear to end of line sequence) are given by the two-

character code, an "=", and then a string ending at the next following ",".

A number of escape sequences are provided in the string valued capabilities for easy encoding of

terminfo(5) File Formats terminfo(5)

terminfo(5)

characters there:

+o Both \E and \e map to an ESCAPE character,

+o ^x maps to a control-x for any appropriate x, and

+o the sequences

\n, \l, \r, \t, \b, \f, and \s

produce

newline, line-feed, return, tab, backspace, form-feed, and space,

respectively.

X/Open Curses does not say what "appropriate x" might be. In practice, that is a printable ASCII

graphic character. The special case "^?" is interpreted as DEL (127). In all other cases, the character

value is AND’d with 0x1f, mapping to ASCII control codes in the range 0 through 31.

Other escapes include

+o \^ for ^,

+o \\ for \,

+o \, for comma,

+o \: for :,

+o and \0 for null.

\0 will produce \200, which does not terminate a string but behaves as a null character on most

terminals, providing CS7 is specified. See stty(1).

The reason for this quirk is to maintain binary compatibility of the compiled terminfo files with

other implementations, e.g., the SVr4 systems, which document this. Compiled terminfo files use

null-terminated strings, with no lengths. Modifying this would require a new binary format,

which would not work with other implementations.

terminfo(5) File Formats terminfo(5)

terminfo(5)

Finally, characters may be given as three octal digits after a \.

A delay in milliseconds may appear anywhere in a string capability, enclosed in $<..> brackets, as in

el=\EK$<5>, and padding characters are supplied by tputs(3X) to provide this delay.

+o The delay must be a number with at most one decimal place of precision; it may be followed by

suffixes "*" or "/" or both.

+o A "*" indicates that the padding required is proportional to the number of lines affected by the

operation, and the amount given is the per-affected-unit padding required. (In the case of insert

character, the factor is still the number of lines affected.)

Normally, padding is advisory if the device has the xon capability; it is used for cost computation

but does not trigger delays.

+o A "/" suffix indicates that the padding is mandatory and forces a delay of the given number of

milliseconds even on devices for which xon is present to indicate flow control.

Sometimes individual capabilities must be commented out. To do this, put a period before the

capability name. For example, see the second ind in the example above.

Fetching Compiled Descriptions
The ncurses library searches for terminal descriptions in several places. It uses only the first

description found. The library has a compiled-in list of places to search which can be overridden by

environment variables. Before starting to search, ncurses eliminates duplicates in its search list.

+o If the environment variable TERMINFO is set, it is interpreted as the pathname of a directory

containing the compiled description you are working on. Only that directory is searched.

+o If TERMINFO is not set, ncurses will instead look in the directory $HOME/.terminfo for a

compiled description.

+o Next, if the environment variable TERMINFO_DIRS is set, ncurses will interpret the contents of

that variable as a list of colon-separated directories (or database files) to be searched.

An empty directory name (i.e., if the variable begins or ends with a colon, or contains adjacent

colons) is interpreted as the system location /usr/share/misc/terminfo.

+o Finally, ncurses searches these compiled-in locations:

terminfo(5) File Formats terminfo(5)

terminfo(5)

+o a list of directories (@TERMINFO_DIRS@), and

+o the system terminfo directory, /usr/share/misc/terminfo (the compiled-in default).

Preparing Descriptions
We now outline how to prepare descriptions of terminals. The most effective way to prepare a terminal

description is by imitating the description of a similar terminal in terminfo and to build up a description

gradually, using partial descriptions with vi or some other screen-oriented program to check that they

are correct. Be aware that a very unusual terminal may expose deficiencies in the ability of the

terminfo file to describe it or bugs in the screen-handling code of the test program.

To get the padding for insert line right (if the terminal manufacturer did not document it) a severe test

is to edit a large file at 9600 baud, delete 16 or so lines from the middle of the screen, then hit the "u"

key several times quickly. If the terminal messes up, more padding is usually needed. A similar test

can be used for insert character.

Basic Capabilities
The number of columns on each line for the terminal is given by the cols numeric capability. If the

terminal is a CRT, then the number of lines on the screen is given by the lines capability. If the

terminal wraps around to the beginning of the next line when it reaches the right margin, then it should

have the am capability. If the terminal can clear its screen, leaving the cursor in the home position,

then this is given by the clear string capability. If the terminal overstrikes (rather than clearing a

position when a character is struck over) then it should have the os capability. If the terminal is a

printing terminal, with no soft copy unit, give it both hc and os. (os applies to storage scope terminals,

such as TEKTRONIX 4010 series, as well as hard copy and APL terminals.) If there is a code to move

the cursor to the left edge of the current row, give this as cr. (Normally this will be carriage return,

control/M.) If there is a code to produce an audible signal (bell, beep, etc) give this as bel.

If there is a code to move the cursor one position to the left (such as backspace) that capability should

be given as cub1. Similarly, codes to move to the right, up, and down should be given as cuf1, cuu1,

and cud1. These local cursor motions should not alter the text they pass over, for example, you would

not normally use "cuf1= " because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo are undefined at the

left and top edges of a CRT terminal. Programs should never attempt to backspace around the left

edge, unless bw is given, and never attempt to go up locally off the top. In order to scroll text up, a

program will go to the bottom left corner of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri (reverse index)

string. The strings ind and ri are undefined when not on their respective corners of the screen.

terminfo(5) File Formats terminfo(5)

terminfo(5)

Parameterized versions of the scrolling sequences are indn and rin which have the same semantics as

ind and ri except that they take one parameter, and scroll that many lines. They are also undefined

except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is output, but

this does not necessarily apply to a cuf1 from the last column. The only local motion which is defined

from the left edge is if bw is given, then a cub1 from the left edge will move to the right edge of the

previous row. If bw is not given, the effect is undefined. This is useful for drawing a box around the

edge of the screen, for example. If the terminal has switch selectable automatic margins, the terminfo

file usually assumes that this is on; i.e., am. If the terminal has a command which moves to the first

column of the next line, that command can be given as nel (newline). It does not matter if the

command clears the remainder of the current line, so if the terminal has no cr and lf it may still be

possible to craft a working nel out of one or both of them.

These capabilities suffice to describe hard-copy and "glass-tty" terminals. Thus the model 33 teletype

is described as

33|tty33|tty|model 33 teletype,

bel=^G, cols#72, cr=^M, cud1=^J, hc, ind=^J, os,

while the Lear Siegler ADM-3 is described as

adm3|3|lsi adm3,

am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H, cud1=^J,

ind=^J, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring parameters in the terminal are described by a

parameterized string capability, with printf-like escapes such as %x in it. For example, to address the

cursor, the cup capability is given, using two parameters: the row and column to address to. (Rows and

columns are numbered from zero and refer to the physical screen visible to the user, not to any unseen

memory.) If the terminal has memory relative cursor addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it. Typically a sequence will

push one of the parameters onto the stack and then print it in some format. Print (e.g., "%d") is a

special case. Other operations, including "%t" pop their operand from the stack. It is noted that more

complex operations are often necessary, e.g., in the sgr string.

The % encodings have the following meanings:

terminfo(5) File Formats terminfo(5)

terminfo(5)

%% outputs "%"

%[[:]flags][width[.precision]][doxXs]

as in printf(3), flags are [-+#] and space. Use a ":" to allow the next character to be a "-" flag,

avoiding interpreting "%-" as an operator.

%c print pop() like %c in printf

%s print pop() like %s in printf

%p[1-9]

push i’th parameter

%P[a-z]

set dynamic variable [a-z] to pop()

%g[a-z]/

get dynamic variable [a-z] and push it

%P[A-Z]

set static variable [a-z] to pop()

%g[A-Z]

get static variable [a-z] and push it

The terms "static" and "dynamic" are misleading. Historically, these are simply two different

sets of variables, whose values are not reset between calls to tparm(3X). However, that fact is

not documented in other implementations. Relying on it will adversely impact portability to

other implementations.

%’c’ char constant c

%{nn}
integer constant nn

%l push strlen(pop)

%+, %-, %*, %/, %m
arithmetic (%m is mod): push(pop() op pop())

terminfo(5) File Formats terminfo(5)

terminfo(5)

%&, %|, %^
bit operations (AND, OR and exclusive-OR): push(pop() op pop())

%=, %>, %<
logical operations: push(pop() op pop())

%A, %O
logical AND and OR operations (for conditionals)

%!, %~
unary operations (logical and bit complement): push(op pop())

%i add 1 to first two parameters (for ANSI terminals)

%? expr %t thenpart %e elsepart %;
This forms an if-then-else. The %e elsepart is optional. Usually the %? expr part pushes a value

onto the stack, and %t pops it from the stack, testing if it is nonzero (true). If it is zero (false),

control passes to the %e (else) part.

It is possible to form else-if’s a la Algol 68:

%? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e %;

where ci are conditions, bi are bodies.

Use the -f option of tic or infocmp to see the structure of if-then-else’s. Some strings, e.g., sgr
can be very complicated when written on one line. The -f option splits the string into lines with

the parts indented.

Binary operations are in postfix form with the operands in the usual order. That is, to get x-5 one

would use "%gx%{5}%-". %P and %g variables are persistent across escape-string evaluations.

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y padded for

6 milliseconds. Note that the order of the rows and columns is inverted here, and that the row and

column are printed as two digits. Thus its cup capability is "cup=6\E&%p2%2dc%p1%2dY".

The Microterm ACT-IV needs the current row and column sent preceded by a ^T, with the row and

column simply encoded in binary, "cup=^T%p1%c%p2%c". Terminals which use "%c" need to be

able to backspace the cursor (cub1), and to move the cursor up one line on the screen (cuu1). This is

necessary because it is not always safe to transmit \n ^D and \r, as the system may change or discard

them. (The library routines dealing with terminfo set tty modes so that tabs are never expanded, so \t is

terminfo(5) File Formats terminfo(5)

terminfo(5)

safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus

"cup=\E=%p1%’ ’%+%c%p2%’ ’%+%c". After sending "\E=", this pushes the first parameter, pushes

the ASCII value for a space (32), adds them (pushing the sum on the stack in place of the two previous

values) and outputs that value as a character. Then the same is done for the second parameter. More

complex arithmetic is possible using the stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner of screen) then this can be

given as home; similarly a fast way of getting to the lower left-hand corner can be given as ll; this may

involve going up with cuu1 from the home position, but a program should never do this itself (unless ll
does) because it can make no assumption about the effect of moving up from the home position. Note

that the home position is the same as addressing to (0,0): to the top left corner of the screen, not of

memory. (Thus, the \EH sequence on HP terminals cannot be used for home.)

If the terminal has row or column absolute cursor addressing, these can be given as single parameter

capabilities hpa (horizontal position absolute) and vpa (vertical position absolute). Sometimes these

are shorter than the more general two parameter sequence (as with the hp2645) and can be used in

preference to cup. If there are parameterized local motions (e.g., move n spaces to the right) these can

be given as cud, cub, cuf, and cuu with a single parameter indicating how many spaces to move. These

are primarily useful if the terminal does not have cup, such as the TEKTRONIX 4025.

If the terminal needs to be in a special mode when running a program that uses these capabilities, the

codes to enter and exit this mode can be given as smcup and rmcup. This arises, for example, from

terminals like the Concept with more than one page of memory. If the terminal has only memory

relative cursor addressing and not screen relative cursor addressing, a one screen-sized window must be

fixed into the terminal for cursor addressing to work properly. This is also used for the TEKTRONIX

4025, where smcup sets the command character to be the one used by terminfo. If the smcup sequence

will not restore the screen after an rmcup sequence is output (to the state prior to outputting rmcup),

specify nrrmc.

Area Clears
If the terminal can clear from the current position to the end of the line, leaving the cursor where it is,

this should be given as el. If the terminal can clear from the beginning of the line to the current

position inclusive, leaving the cursor where it is, this should be given as el1. If the terminal can clear

from the current position to the end of the display, then this should be given as ed. Ed is only defined

from the first column of a line. (Thus, it can be simulated by a request to delete a large number of

lines, if a true ed is not available.)

terminfo(5) File Formats terminfo(5)

terminfo(5)

Insert/delete line and vertical motions
If the terminal can open a new blank line before the line where the cursor is, this should be given as il1;

this is done only from the first position of a line. The cursor must then appear on the newly blank line.

If the terminal can delete the line which the cursor is on, then this should be given as dl1; this is done

only from the first position on the line to be deleted. Versions of il1 and dl1 which take a single

parameter and insert or delete that many lines can be given as il and dl.

If the terminal has a settable scrolling region (like the vt100) the command to set this can be described

with the csr capability, which takes two parameters: the top and bottom lines of the scrolling region.

The cursor position is, alas, undefined after using this command.

It is possible to get the effect of insert or delete line using csr on a properly chosen region; the sc and rc
(save and restore cursor) commands may be useful for ensuring that your synthesized insert/delete

string does not move the cursor. (Note that the ncurses(3X) library does this synthesis automatically,

so you need not compose insert/delete strings for an entry with csr).

Yet another way to construct insert and delete might be to use a combination of index with the

memory-lock feature found on some terminals (like the HP-700/90 series, which however also has

insert/delete).

Inserting lines at the top or bottom of the screen can also be done using ri or ind on many terminals

without a true insert/delete line, and is often faster even on terminals with those features.

The boolean non_dest_scroll_region should be set if each scrolling window is effectively a view port

on a screen-sized canvas. To test for this capability, create a scrolling region in the middle of the

screen, write something to the bottom line, move the cursor to the top of the region, and do ri followed

by dl1 or ind. If the data scrolled off the bottom of the region by the ri re-appears, then scrolling is

non-destructive. System V and XSI Curses expect that ind, ri, indn, and rin will simulate destructive

scrolling; their documentation cautions you not to define csr unless this is true. This curses
implementation is more liberal and will do explicit erases after scrolling if ndsrc is defined.

If the terminal has the ability to define a window as part of memory, which all commands affect, it

should be given as the parameterized string wind. The four parameters are the starting and ending lines

in memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if display

memory can be retained below, then db should be given. These indicate that deleting a line or scrolling

may bring non-blank lines up from below or that scrolling back with ri may bring down non-blank

lines.

terminfo(5) File Formats terminfo(5)

terminfo(5)

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to insert/delete character which can be

described using terminfo. The most common insert/delete character operations affect only the

characters on the current line and shift characters off the end of the line rigidly. Other terminals, such

as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed and untyped blanks on

the screen, shifting upon an insert or delete only to an untyped blank on the screen which is either

eliminated, or expanded to two untyped blanks.

You can determine the kind of terminal you have by clearing the screen and then typing text separated

by cursor motions. Type "abc def" using local cursor motions (not spaces) between the "abc" and the

"def". Then position the cursor before the "abc" and put the terminal in insert mode. If typing

characters causes the rest of the line to shift rigidly and characters to fall off the end, then your terminal

does not distinguish between blanks and untyped positions. If the "abc" shifts over to the "def" which

then move together around the end of the current line and onto the next as you insert, you have the

second type of terminal, and should give the capability in, which stands for "insert null".

While these are two logically separate attributes (one line versus multi-line insert mode, and special

treatment of untyped spaces) we have seen no terminals whose insert mode cannot be described with

the single attribute.

Terminfo can describe both terminals which have an insert mode, and terminals which send a simple

sequence to open a blank position on the current line. Give as smir the sequence to get into insert

mode. Give as rmir the sequence to leave insert mode. Now give as ich1 any sequence needed to be

sent just before sending the character to be inserted. Most terminals with a true insert mode will not

give ich1; terminals which send a sequence to open a screen position should give it here.

If your terminal has both, insert mode is usually preferable to ich1. Technically, you should not give

both unless the terminal actually requires both to be used in combination. Accordingly, some non-

curses applications get confused if both are present; the symptom is doubled characters in an update

using insert. This requirement is now rare; most ich sequences do not require previous smir, and most

smir insert modes do not require ich1 before each character. Therefore, the new curses actually

assumes this is the case and uses either rmir/smir or ich/ich1 as appropriate (but not both). If you have

to write an entry to be used under new curses for a terminal old enough to need both, include the

rmir/smir sequences in ich1.

If post insert padding is needed, give this as a number of milliseconds in ip (a string option). Any other

sequence which may need to be sent after an insert of a single character may also be given in ip. If

your terminal needs both to be placed into an "insert mode" and a special code to precede each inserted

character, then both smir/rmir and ich1 can be given, and both will be used. The ich capability, with

one parameter, n, will repeat the effects of ich1 n times.

terminfo(5) File Formats terminfo(5)

terminfo(5)

If padding is necessary between characters typed while not in insert mode, give this as a number of

milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete characters on the same line

(e.g., if there is a tab after the insertion position). If your terminal allows motion while in insert mode

you can give the capability mir to speed up inserting in this case. Omitting mir will affect only speed.

Some terminals (notably Datamedia’s) must not have mir because of the way their insert mode works.

Finally, you can specify dch1 to delete a single character, dch with one parameter, n, to delete n

characters, and delete mode by giving smdc and rmdc to enter and exit delete mode (any mode the

terminal needs to be placed in for dch1 to work).

A command to erase n characters (equivalent to outputting n blanks without moving the cursor) can be

given as ech with one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes, these can be represented in a number of

different ways. You should choose one display form as standout mode, representing a good, high

contrast, easy-on-the-eyes, format for highlighting error messages and other attention getters. (If you

have a choice, reverse video plus half-bright is good, or reverse video alone.) The sequences to enter

and exit standout mode are given as smso and rmso, respectively. If the code to change into or out of

standout mode leaves one or even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do,

then xmc should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul respectively. If the

terminal has a code to underline the current character and move the cursor one space to the right, such

as the Microterm Mime, this can be given as uc.

Other capabilities to enter various highlighting modes include blink (blinking) bold (bold or extra

bright) dim (dim or half-bright) invis (blanking or invisible text) prot (protected) rev (reverse video)

sgr0 (turn off all attribute modes) smacs (enter alternate character set mode) and rmacs (exit alternate

character set mode). Turning on any of these modes singly may or may not turn off other modes.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set attributes),

taking 9 parameters. Each parameter is either 0 or nonzero, as the corresponding attribute is on or off.

The 9 parameters are, in order: standout, underline, reverse, blink, dim, bold, blank, protect, alternate

character set. Not all modes need be supported by sgr, only those for which corresponding separate

attribute commands exist.

For example, the DEC vt220 supports most of the modes:

terminfo(5) File Formats terminfo(5)

terminfo(5)

tparm attribute escape
parameter sequence

none none \E[0m

p1 standout \E[0;1;7m

p2 underline \E[0;4m

p3 reverse \E[0;7m

p4 blink \E[0;5m

p5 dim not

available

p6 bold \E[0;1m

p7 invis \E[0;8m

p8 protect not

used

p9 altcharset ^O (off) ^N (on)

We begin each escape sequence by turning off any existing modes, since there is no quick way to

determine whether they are active. Standout is set up to be the combination of reverse and bold. The

vt220 terminal has a protect mode, though it is not commonly used in sgr because it protects characters

on the screen from the host’s erasures. The altcharset mode also is different in that it is either ^O or

^N, depending on whether it is off or on. If all modes are turned on, the resulting sequence is

\E[0;1;4;5;7;8m^N.

Some sequences are common to different modes. For example, ;7 is output when either p1 or p3 is

true, that is, if either standout or reverse modes are turned on.

Writing out the above sequences, along with their dependencies yields

sequence when to output terminfo
translation

\E[0 always \E[0

;1 if p1 or %?%p1%p6%|%t;1%;

p6

;4 if %?%p2%|%t;4%;

p2

;5 if %?%p4%|%t;5%;

p4

;7 if p1 or %?%p1%p3%|%t;7%;

p3

terminfo(5) File Formats terminfo(5)

terminfo(5)

;8 if %?%p7%|%t;8%;

p7

m always m

^N or if p9 ^N, else %?%p9%t^N%e^O%;

^O ^O

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p1%p6%|%t;1%;%?%p2%t;4%;%?%p4%t;5%;

%?%p1%p3%|%t;7%;%?%p7%t;8%;m%?%p9%t\016%e\017%;,

Remember that if you specify sgr, you must also specify sgr0. Also, some implementations rely on sgr

being given if sgr0 is, Not all terminfo entries necessarily have an sgr string, however. Many terminfo

entries are derived from termcap entries which have no sgr string. The only drawback to adding an sgr

string is that termcap also assumes that sgr0 does not exit alternate character set mode.

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when they receive mode-

setting sequences, which affect the display algorithm rather than having extra bits for each character.

Some terminals, such as the HP 2621, automatically leave standout mode when they move to a new

line or the cursor is addressed. Programs using standout mode should exit standout mode before

moving the cursor or sending a newline, unless the msgr capability, asserting that it is safe to move in

standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement) then this

can be given as flash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to make, for

example, a non-blinking underline into an easier to find block or blinking underline) give this sequence

as cvvis. If there is a way to make the cursor completely invisible, give that as civis. The capability

cnorm should be given which undoes the effects of both of these modes.

If your terminal correctly generates underlined characters (with no special codes needed) even though it

does not overstrike, then you should give the capability ul. If a character overstriking another leaves

both characters on the screen, specify the capability os. If overstrikes are erasable with a blank, then

this should be indicated by giving eo.

Keypad and Function Keys
If the terminal has a keypad that transmits codes when the keys are pressed, this information can be

given. Note that it is not possible to handle terminals where the keypad only works in local (this

applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to transmit or not

terminfo(5) File Formats terminfo(5)

terminfo(5)

transmit, give these codes as smkx and rmkx. Otherwise the keypad is assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be given as

kcub1, kcuf1, kcuu1, kcud1, and khome respectively. If there are function keys such as f0, f1, ..., f10,

the codes they send can be given as kf0, kf1, ..., kf10. If these keys have labels other than the default

f0 through f10, the labels can be given as lf0, lf1, ..., lf10.

The codes transmitted by certain other special keys can be given:

+o kll (home down),

+o kbs (backspace),

+o ktbc (clear all tabs),

+o kctab (clear the tab stop in this column),

+o kclr (clear screen or erase key),

+o kdch1 (delete character),

+o kdl1 (delete line),

+o krmir (exit insert mode),

+o kel (clear to end of line),

+o ked (clear to end of screen),

+o kich1 (insert character or enter insert mode),

+o kil1 (insert line),

+o knp (next page),

+o kpp (previous page),

+o kind (scroll forward/down),

+o kri (scroll backward/up),

terminfo(5) File Formats terminfo(5)

terminfo(5)

+o khts (set a tab stop in this column).

In addition, if the keypad has a 3 by 3 array of keys including the four arrow keys, the other five keys

can be given as ka1, ka3, kb2, kc1, and kc3. These keys are useful when the effects of a 3 by 3

directional pad are needed.

Strings to program function keys can be given as pfkey, pfloc, and pfx. A string to program screen

labels should be specified as pln. Each of these strings takes two parameters: the function key number

to program (from 0 to 10) and the string to program it with. Function key numbers out of this range

may program undefined keys in a terminal dependent manner. The difference between the capabilities

is that pfkey causes pressing the given key to be the same as the user typing the given string; pfloc
causes the string to be executed by the terminal in local; and pfx causes the string to be transmitted to

the computer.

The capabilities nlab, lw and lh define the number of programmable screen labels and their width and

height. If there are commands to turn the labels on and off, give them in smln and rmln. smln is

normally output after one or more pln sequences to make sure that the change becomes visible.

Tabs and Initialization
A few capabilities are used only for tabs:

+o If the terminal has hardware tabs, the command to advance to the next tab stop can be given as ht
(usually control/I).

+o A "back-tab" command which moves leftward to the preceding tab stop can be given as cbt.

By convention, if the teletype modes indicate that tabs are being expanded by the computer rather

than being sent to the terminal, programs should not use ht or cbt even if they are present, since

the user may not have the tab stops properly set.

+o If the terminal has hardware tabs which are initially set every n spaces when the terminal is

powered up, the numeric parameter it is given, showing the number of spaces the tabs are set to.

The it capability is normally used by the tset command to determine whether to set the mode for

hardware tab expansion, and whether to set the tab stops. If the terminal has tab stops that can be

saved in non-volatile memory, the terminfo description can assume that they are properly set.

Other capabilities include

+o is1, is2, and is3, initialization strings for the terminal,

terminfo(5) File Formats terminfo(5)

terminfo(5)

+o iprog, the path name of a program to be run to initialize the terminal,

+o and if, the name of a file containing long initialization strings.

These strings are expected to set the terminal into modes consistent with the rest of the terminfo

description. They are normally sent to the terminal, by the init option of the tput program, each time

the user logs in. They will be printed in the following order:

run the program

iprog

output

is1 and

is2

set the margins using

mgc or

smglp and smgrp or

smgl and smgr

set tabs using

tbc and hts

print the file

if

and finally output

is3.

Most initialization is done with is2. Special terminal modes can be set up without duplicating strings

by putting the common sequences in is2 and special cases in is1 and is3.

A set of sequences that does a harder reset from a totally unknown state can be given as rs1, rs2, rf and

rs3, analogous to is1 , is2 , if and is3 respectively. These strings are output by reset option of tput, or

by the reset program (an alias of tset), which is used when the terminal gets into a wedged state.

Commands are normally placed in rs1, rs2 rs3 and rf only if they produce annoying effects on the

screen and are not necessary when logging in. For example, the command to set the vt100 into

80-column mode would normally be part of is2, but it causes an annoying glitch of the screen and is

not normally needed since the terminal is usually already in 80-column mode.

terminfo(5) File Formats terminfo(5)

terminfo(5)

The reset program writes strings including iprog, etc., in the same order as the init program, using rs1,

etc., instead of is1, etc. If any of rs1, rs2, rs3, or rf reset capability strings are missing, the reset
program falls back upon the corresponding initialization capability string.

If there are commands to set and clear tab stops, they can be given as tbc (clear all tab stops) and hts
(set a tab stop in the current column of every row). If a more complex sequence is needed to set the

tabs than can be described by this, the sequence can be placed in is2 or if.

The tput reset command uses the same capability strings as the reset command, although the two

programs (tput and reset) provide different command-line options.

In practice, these terminfo capabilities are not often used in initialization of tabs (though they are

required for the tabs program):

+o Almost all hardware terminals (at least those which supported tabs) initialized those to every

eight columns:

The only exception was the AT&T 2300 series, which set tabs to every five columns.

+o In particular, developers of the hardware terminals which are commonly used as models for

modern terminal emulators provided documentation demonstrating that eight columns were the

standard.

+o Because of this, the terminal initialization programs tput and tset use the tbc (clear_all_tabs) and

hts (set_tab) capabilities directly only when the it (init_tabs) capability is set to a value other than

eight.

Delays and Padding
Many older and slower terminals do not support either XON/XOFF or DTR handshaking, including

hard copy terminals and some very archaic CRTs (including, for example, DEC VT100s). These may

require padding characters after certain cursor motions and screen changes.

If the terminal uses xon/xoff handshaking for flow control (that is, it automatically emits ^S back to the

host when its input buffers are close to full), set xon. This capability suppresses the emission of

padding. You can also set it for memory-mapped console devices effectively that do not have a speed

limit. Padding information should still be included so that routines can make better decisions about

relative costs, but actual pad characters will not be transmitted.

If pb (padding baud rate) is given, padding is suppressed at baud rates below the value of pb. If the

entry has no padding baud rate, then whether padding is emitted or not is completely controlled by xon.

terminfo(5) File Formats terminfo(5)

terminfo(5)

If the terminal requires other than a null (zero) character as a pad, then this can be given as pad. Only

the first character of the pad string is used.

Status Lines
Some terminals have an extra "status line" which is not normally used by software (and thus not

counted in the terminal’s lines capability).

The simplest case is a status line which is cursor-addressable but not part of the main scrolling region

on the screen; the Heathkit H19 has a status line of this kind, as would a 24-line VT100 with a 23-line

scrolling region set up on initialization. This situation is indicated by the hs capability.

Some terminals with status lines need special sequences to access the status line. These may be

expressed as a string with single parameter tsl which takes the cursor to a given zero-origin column on

the status line. The capability fsl must return to the main-screen cursor positions before the last tsl.
You may need to embed the string values of sc (save cursor) and rc (restore cursor) in tsl and fsl to

accomplish this.

The status line is normally assumed to be the same width as the width of the terminal. If this is untrue,

you can specify it with the numeric capability wsl.

A command to erase or blank the status line may be specified as dsl.

The boolean capability eslok specifies that escape sequences, tabs, etc., work ordinarily in the status

line.

The ncurses implementation does not yet use any of these capabilities. They are documented here in

case they ever become important.

Line Graphics
Many terminals have alternate character sets useful for forms-drawing. Terminfo and curses have

built-in support for most of the drawing characters supported by the VT100, with some characters from

the AT&T 4410v1 added. This alternate character set may be specified by the acsc capability.

Glyph ACS Ascii acsc acsc
Name Name DefaultChar Value
--

arrow pointing ACS_RARROW > + 0x2b

right

arrow pointing ACS_LARROW < , 0x2c

left

terminfo(5) File Formats terminfo(5)

terminfo(5)

arrow pointing ACS_UARROW ^ - 0x2d

up

arrow pointing ACS_DARROW v . 0x2e

down

solid square ACS_BLOCK # 0 0x30

block

diamond ACS_DIAMOND + ‘ 0x60

checker board ACS_CKBOARD : a 0x61

(stipple)

degree symbol ACS_DEGREE \ f 0x66

plus/minus ACS_PLMINUS # g 0x67

board of ACS_BOARD # h 0x68

squares

lantern symbol ACS_LANTERN # i 0x69

lower right ACS_LRCORNER+ j 0x6a

corner

upper right ACS_URCORNER+ k 0x6b

corner

upper left ACS_ULCORNER+ l 0x6c

corner

lower left ACS_LLCORNER + m 0x6d

corner

large plus or ACS_PLUS + n 0x6e

crossover

scan line 1 ACS_S1 ~ o 0x6f

scan line 3 ACS_S3 - p 0x70

horizontal line ACS_HLINE - q 0x71

scan line 7 ACS_S7 - r 0x72

scan line 9 ACS_S9 _ s 0x73

tee pointing ACS_LTEE + t 0x74

right

tee pointing ACS_RTEE + u 0x75

left

tee pointing up ACS_BTEE + v 0x76

tee pointing ACS_TTEE + w 0x77

down

vertical line ACS_VLINE | x 0x78

less-than-or-equal-to ACS_LEQUAL < y 0x79

greater-than-or-equal-to ACS_GEQUAL > z 0x7a

greek pi ACS_PI * { 0x7b

terminfo(5) File Formats terminfo(5)

terminfo(5)

not-equal ACS_NEQUAL ! | 0x7c

UK pound sign ACS_STERLING f } 0x7d

bullet ACS_BULLET o ~ 0x7e

A few notes apply to the table itself:

+o X/Open Curses incorrectly states that the mapping for lantern is uppercase "I" although Unix

implementations use the lowercase "i" mapping.

+o The DEC VT100 implemented graphics using the alternate character set feature, temporarily

switching modes and sending characters in the range 0x60 (96) to 0x7e (126) (the acsc Value
column in the table).

+o The AT&T terminal added graphics characters outside that range.

Some of the characters within the range do not match the VT100; presumably they were used in

the AT&T terminal: board of squares replaces the VT100 newline symbol, while lantern symbol

replaces the VT100 vertical tab symbol. The other VT100 symbols for control characters

(horizontal tab, carriage return and line-feed) are not (re)used in curses.

The best way to define a new device’s graphics set is to add a column to a copy of this table for your

terminal, giving the character which (when emitted between smacs/rmacs switches) will be rendered as

the corresponding graphic. Then read off the VT100/your terminal character pairs right to left in

sequence; these become the ACSC string.

Color Handling
The curses library functions init_pair and init_color manipulate the color pairs and color values

discussed in this section (see curs_color(3X) for details on these and related functions).

Most color terminals are either "Tektronix-like" or "HP-like":

+o Tektronix-like terminals have a predefined set of N colors (where N is usually 8), and can set

character-cell foreground and background characters independently, mixing them into N * N

color-pairs.

+o On HP-like terminals, the user must set each color pair up separately (foreground and background

are not independently settable). Up to M color-pairs may be set up from 2*M different colors.

ANSI-compatible terminals are Tektronix-like.

Some basic color capabilities are independent of the color method. The numeric capabilities colors and

terminfo(5) File Formats terminfo(5)

terminfo(5)

pairs specify the maximum numbers of colors and color-pairs that can be displayed simultaneously.

The op (original pair) string resets foreground and background colors to their default values for the

terminal. The oc string resets all colors or color-pairs to their default values for the terminal. Some

terminals (including many PC terminal emulators) erase screen areas with the current background color

rather than the power-up default background; these should have the boolean capability bce.

While the curses library works with color pairs (reflecting the inability of some devices to set

foreground and background colors independently), there are separate capabilities for setting these

features:

+o To change the current foreground or background color on a Tektronix-type terminal, use setaf (set

ANSI foreground) and setab (set ANSI background) or setf (set foreground) and setb (set

background). These take one parameter, the color number. The SVr4 documentation describes

only setaf/setab; the XPG4 draft says that "If the terminal supports ANSI escape sequences to set

background and foreground, they should be coded as setaf and setab, respectively.

+o If the terminal supports other escape sequences to set background and foreground, they should be

coded as setf and setb, respectively. The vidputs and the refresh(3X) functions use the setaf and

setab capabilities if they are defined.

The setaf/setab and setf/setb capabilities take a single numeric argument each. Argument values 0-7 of

setaf/setab are portably defined as follows (the middle column is the symbolic #define available in the

header for the curses or ncurses libraries). The terminal hardware is free to map these as it likes, but

the RGB values indicate normal locations in color space.

Color #define Value RGB

black COLOR_BLACK 0 0, 0,

0

red COLOR_RED 1 max,0,0

green COLOR_GREEN 2 0,max,0

yellow COLOR_YELLOW 3 max,max,0

blue COLOR_BLUE 4 0,0,max

magentaCOLOR_MAGENTA 5 max,0,max

cyan COLOR_CYAN 6 0,max,max

white COLOR_WHITE 7 max,max,max

The argument values of setf/setb historically correspond to a different mapping, i.e.,

Color #define Value RGB

terminfo(5) File Formats terminfo(5)

terminfo(5)

black COLOR_BLACK 0 0, 0,

0

blue COLOR_BLUE 1 0,0,max

green COLOR_GREEN 2 0,max,0

cyan COLOR_CYAN 3 0,max,max

red COLOR_RED 4 max,0,0

magentaCOLOR_MAGENTA 5 max,0,max

yellow COLOR_YELLOW 6 max,max,0

white COLOR_WHITE 7 max,max,max

It is important to not confuse the two sets of color capabilities; otherwise red/blue will be interchanged

on the display.

On an HP-like terminal, use scp with a color-pair number parameter to set which color pair is current.

Some terminals allow the color values to be modified:

+o On a Tektronix-like terminal, the capability ccc may be present to indicate that colors can be

modified. If so, the initc capability will take a color number (0 to colors - 1)and three more

parameters which describe the color. These three parameters default to being interpreted as RGB

(Red, Green, Blue) values. If the boolean capability hls is present, they are instead as HLS (Hue,

Lightness, Saturation) indices. The ranges are terminal-dependent.

+o On an HP-like terminal, initp may give a capability for changing a color-pair value. It will take

seven parameters; a color-pair number (0 to max_pairs - 1), and two triples describing first

background and then foreground colors. These parameters must be (Red, Green, Blue) or (Hue,

Lightness, Saturation) depending on hls.

On some color terminals, colors collide with highlights. You can register these collisions with the ncv
capability. This is a bit-mask of attributes not to be used when colors are enabled. The correspondence

with the attributes understood by curses is as follows:

Attribute BitDecimal Set by
A_STANDOUT 0 1 sgr

A_UNDERLINE 1 2 sgr

A_REVERSE 2 4 sgr

A_BLINK 3 8 sgr

A_DIM 4 16 sgr

A_BOLD 5 32 sgr

A_INVIS 6 64 sgr

terminfo(5) File Formats terminfo(5)

terminfo(5)

A_PROTECT 7 128 sgr

A_ALTCHARSET 8 256 sgr

A_HORIZONTAL 9 512 sgr1

A_LEFT 10 1024 sgr1

A_LOW 11 2048 sgr1

A_RIGHT 12 4096 sgr1

A_TOP 13 8192 sgr1

A_VERTICAL 14 16384 sgr1

A_ITALIC 15 32768 sitm

For example, on many IBM PC consoles, the underline attribute collides with the foreground color blue

and is not available in color mode. These should have an ncv capability of 2.

SVr4 curses does nothing with ncv, ncurses recognizes it and optimizes the output in favor of colors.

Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this can be given as pad. Only

the first character of the pad string is used. If the terminal does not have a pad character, specify npc.

Note that ncurses implements the termcap-compatible PC variable; though the application may set this

value to something other than a null, ncurses will test npc first and use napms if the terminal has no pad

character.

If the terminal can move up or down half a line, this can be indicated with hu (half-line up) and hd
(half-line down). This is primarily useful for superscripts and subscripts on hard-copy terminals. If a

hard-copy terminal can eject to the next page (form feed), give this as ff (usually control/L).

If there is a command to repeat a given character a given number of times (to save time transmitting a

large number of identical characters) this can be indicated with the parameterized string rep. The first

parameter is the character to be repeated and the second is the number of times to repeat it. Thus,

tparm(repeat_char, ’x’, 10) is the same as "xxxxxxxxxx".

If the terminal has a settable command character, such as the TEKTRONIX 4025, this can be indicated

with cmdch. A prototype command character is chosen which is used in all capabilities. This character

is given in the cmdch capability to identify it. The following convention is supported on some UNIX

systems: The environment is to be searched for a CC variable, and if found, all occurrences of the

prototype character are replaced with the character in the environment variable.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch, dialup,

patch, and network, should include the gn (generic) capability so that programs can complain that they

do not know how to talk to the terminal. (This capability does not apply to virtual terminal descriptions

terminfo(5) File Formats terminfo(5)

terminfo(5)

for which the escape sequences are known.)

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character

transmitted, this fact can be indicated with km. Otherwise, software will assume that the 8th bit is

parity and it will usually be cleared. If strings exist to turn this "meta mode" on and off, they can be

given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines of

memory can be indicated with lm. A value of lm#0 indicates that the number of lines is not fixed, but

that there is still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX virtual terminal protocol, the terminal number

can be given as vt.

Media copy strings which control an auxiliary printer connected to the terminal can be given as mc0:

print the contents of the screen, mc4: turn off the printer, and mc5: turn on the printer. When the

printer is on, all text sent to the terminal will be sent to the printer. It is undefined whether the text is

also displayed on the terminal screen when the printer is on. A variation mc5p takes one parameter,

and leaves the printer on for as many characters as the value of the parameter, then turns the printer off.

The parameter should not exceed 255. All text, including mc4, is transparently passed to the printer

while an mc5p is in effect.

Glitches and Braindamage
Hazeltine terminals, which do not allow "~" characters to be displayed should indicate hz.

Terminals which ignore a line-feed immediately after an am wrap, such as the Concept and vt100,

should indicate xenl.

If el is required to get rid of standout (instead of merely writing normal text on top of it), xhp should be

given.

Teleray terminals, where tabs turn all characters moved over to blanks, should indicate xt (destructive

tabs). Note: the variable indicating this is now "dest_tabs_magic_smso"; in older versions, it was

teleray_glitch. This glitch is also taken to mean that it is not possible to position the cursor on top of a

"magic cookie", that to erase standout mode it is instead necessary to use delete and insert line. The

ncurses implementation ignores this glitch.

The Beehive Superbee, which is unable to correctly transmit the escape or control/C characters, has

xsb, indicating that the f1 key is used for escape and f2 for control/C. (Only certain Superbees have

this problem, depending on the ROM.) Note that in older terminfo versions, this capability was called

terminfo(5) File Formats terminfo(5)

terminfo(5)

"beehive_glitch"; it is now "no_esc_ctl_c".

Other specific terminal problems may be corrected by adding more capabilities of the form xx.

Pitfalls of Long Entries
Long terminfo entries are unlikely to be a problem; to date, no entry has even approached terminfo’s

4096-byte string-table maximum. Unfortunately, the termcap translations are much more strictly

limited (to 1023 bytes), thus termcap translations of long terminfo entries can cause problems.

The man pages for 4.3BSD and older versions of tgetent instruct the user to allocate a 1024-byte buffer

for the termcap entry. The entry gets null-terminated by the termcap library, so that makes the

maximum safe length for a termcap entry 1k-1 (1023) bytes. Depending on what the application and

the termcap library being used does, and where in the termcap file the terminal type that tgetent is

searching for is, several bad things can happen.

Some termcap libraries print a warning message or exit if they find an entry that’s longer than 1023

bytes; others do not; others truncate the entries to 1023 bytes. Some application programs allocate

more than the recommended 1K for the termcap entry; others do not.

Each termcap entry has two important sizes associated with it: before "tc" expansion, and after "tc"

expansion. "tc" is the capability that tacks on another termcap entry to the end of the current one, to

add on its capabilities. If a termcap entry does not use the "tc" capability, then of course the two

lengths are the same.

The "before tc expansion" length is the most important one, because it affects more than just users of

that particular terminal. This is the length of the entry as it exists in /etc/termcap, minus the backslash-

newline pairs, which tgetent strips out while reading it. Some termcap libraries strip off the final

newline, too (GNU termcap does not). Now suppose:

+o a termcap entry before expansion is more than 1023 bytes long,

+o and the application has only allocated a 1k buffer,

+o and the termcap library (like the one in BSD/OS 1.1 and GNU) reads the whole entry into the

buffer, no matter what its length, to see if it is the entry it wants,

+o and tgetent is searching for a terminal type that either is the long entry, appears in the termcap file

after the long entry, or does not appear in the file at all (so that tgetent has to search the whole

termcap file).

terminfo(5) File Formats terminfo(5)

terminfo(5)

Then tgetent will overwrite memory, perhaps its stack, and probably core dump the program.

Programs like telnet are particularly vulnerable; modern telnets pass along values like the terminal type

automatically. The results are almost as undesirable with a termcap library, like SunOS 4.1.3 and

Ultrix 4.4, that prints warning messages when it reads an overly long termcap entry. If a termcap

library truncates long entries, like OSF/1 3.0, it is immune to dying here but will return incorrect data

for the terminal.

The "after tc expansion" length will have a similar effect to the above, but only for people who actually

set TERM to that terminal type, since tgetent only does "tc" expansion once it is found the terminal

type it was looking for, not while searching.

In summary, a termcap entry that is longer than 1023 bytes can cause, on various combinations of

termcap libraries and applications, a core dump, warnings, or incorrect operation. If it is too long even

before "tc" expansion, it will have this effect even for users of some other terminal types and users

whose TERM variable does not have a termcap entry.

When in -C (translate to termcap) mode, the ncurses implementation of tic(1M) issues warning

messages when the pre-tc length of a termcap translation is too long. The -c (check) option also checks

resolved (after tc expansion) lengths.

Binary Compatibility
It is not wise to count on portability of binary terminfo entries between commercial UNIX versions.

The problem is that there are at least two versions of terminfo (under HP-UX and AIX) which diverged

from System V terminfo after SVr1, and have added extension capabilities to the string table that (in

the binary format) collide with System V and XSI Curses extensions.

EXTENSIONS
Searching for terminal descriptions in $HOME/.terminfo and TERMINFO_DIRS is not supported by

older implementations.

Some SVr4 curses implementations, and all previous to SVr4, do not interpret the %A and %O

operators in parameter strings.

SVr4/XPG4 do not specify whether msgr licenses movement while in an alternate-character-set mode

(such modes may, among other things, map CR and NL to characters that do not trigger local motions).

The ncurses implementation ignores msgr in ALTCHARSET mode. This raises the possibility that an

XPG4 implementation making the opposite interpretation may need terminfo entries made for ncurses
to have msgr turned off.

The ncurses library handles insert-character and insert-character modes in a slightly non-standard way

terminfo(5) File Formats terminfo(5)

terminfo(5)

to get better update efficiency. See the Insert/Delete Character subsection above.

The parameter substitutions for set_clock and display_clock are not documented in SVr4 or the XSI

Curses standard. They are deduced from the documentation for the AT&T 505 terminal.

Be careful assigning the kmous capability. The ncurses library wants to interpret it as KEY_MOUSE,

for use by terminals and emulators like xterm that can return mouse-tracking information in the

keyboard-input stream.

X/Open Curses does not mention italics. Portable applications must assume that numeric capabilities

are signed 16-bit values. This includes the no_color_video (ncv) capability. The 32768 mask value

used for italics with ncv can be confused with an absent or cancelled ncv. If italics should work with

colors, then the ncv value must be specified, even if it is zero.

Different commercial ports of terminfo and curses support different subsets of the XSI Curses standard

and (in some cases) different extension sets. Here is a summary, accurate as of October 1995:

+o SVR4, Solaris, ncurses -- These support all SVr4 capabilities.

+o SGI -- Supports the SVr4 set, adds one undocumented extended string capability (set_pglen).

+o SVr1, Ultrix -- These support a restricted subset of terminfo capabilities. The booleans end with

xon_xoff; the numerics with width_status_line; and the strings with prtr_non.

+o HP/UX -- Supports the SVr1 subset, plus the SVr[234] numerics num_labels, label_height,
label_width, plus function keys 11 through 63, plus plab_norm, label_on, and label_off, plus some

incompatible extensions in the string table.

+o AIX -- Supports the SVr1 subset, plus function keys 11 through 63, plus a number of incompatible

string table extensions.

+o OSF -- Supports both the SVr4 set and the AIX extensions.

FILES
/usr/share/misc/terminfo/?/* files containing terminal descriptions

SEE ALSO
infocmp(1M), tabs(1), tic(1M), curses(3X), curs_color(3X), curs_variables(3X), printf(3),

term_variables(3X). term(5). user_caps(5).

terminfo(5) File Formats terminfo(5)

terminfo(5)

AUTHORS
Zeyd M. Ben-Halim, Eric S. Raymond, Thomas E. Dickey. Based on pcurses by Pavel Curtis.

terminfo(5) File Formats terminfo(5)

terminfo(5)

