
NAME
del_curterm, mvcur, putp, restartterm, set_curterm, setupterm, tigetflag, tigetnum, tigetstr, tiparm,

tiparm_s, tiscan_s, tparm, tputs, vid_attr, vid_puts, vidattr, vidputs - curses interfaces to terminfo

database

SYNOPSIS
#include <curses.h>
#include <term.h>

TERMINAL *cur_term;

const char * const boolnames[];
const char * const boolcodes[];
const char * const boolfnames[];
const char * const numnames[];
const char * const numcodes[];
const char * const numfnames[];
const char * const strnames[];
const char * const strcodes[];
const char * const strfnames[];

int setupterm(const char *term, int filedes, int *errret);
TERMINAL *set_curterm(TERMINAL *nterm);
int del_curterm(TERMINAL *oterm);
int restartterm(const char *term, int filedes, int *errret);

char *tparm(const char *str, ...);
/* or */

char *tparm(const char *str, long p1 ... long p9);

int tputs(const char *str, int affcnt, int (*putc)(int));
int putp(const char *str);

int vidputs(chtype attrs, int (*putc)(int));
int vidattr(chtype attrs);
int vid_puts(attr_t attrs, short pair, void *opts, int (*putc)(int));
int vid_attr(attr_t attrs, short pair, void *opts);

int mvcur(int oldrow, int oldcol, int newrow, int newcol);

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

int tigetflag(const char *cap-code);
int tigetnum(const char *cap-code);
char *tigetstr(const char *cap-code);

char *tiparm(const char *str, ...);

/* extensions */

char *tiparm_s(int expected, int mask, const char *str, ...);
int tiscan_s(int *expected, int *mask, const char *str);

/* deprecated */

int setterm(const char *term);

DESCRIPTION
These low-level functions must be called by programs that deal directly with the terminfo database to

handle certain terminal capabilities, such as programming function keys. For all other functionality,

curses functions are more suitable and their use is recommended.

None of these functions use (or are aware of) multibyte character strings such as UTF-8.

+o Capability names and codes use the POSIX portable character set.

+o Capability string values have no associated encoding; they are strings of 8-bit characters.

Initialization
Initially, setupterm should be called. The high-level curses functions initscr and newterm call

setupterm to initialize the low-level set of terminal-dependent variables listed in term_variables(3X).

Applications can use the terminal capabilities either directly (via header definitions), or by special

functions. The header files curses.h and term.h should be included (in that order) to get the definitions

for these strings, numbers, and flags.

The terminfo variables lines and columns are initialized by setupterm as follows.

+o If use_env(FALSE) has been called, values for lines and columns specified in terminfo are used.

+o Otherwise, if the environment variables LINES and COLUMNS exist, their values are used. If

these environment variables do not exist and the program is running in a window, the current

window size is used. Otherwise, if the environment variables do not exist, the values for lines and

columns specified in the terminfo database are used.

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

Parameterized strings should be passed through tparm to instantiate them. All terminfo strings

(including the output of tparm) should be sent to the terminal device with tputs or putp. Call

reset_shell_mode to restore the terminal modes before exiting; see curs_kernel(3X).

Programs that use cursor addressing should

+o output enter_ca_mode upon startup and

+o output exit_ca_mode before exiting.

Programs that execute shell subprocesses should

+o call reset_shell_mode and output exit_ca_mode before the shell is called and

+o output enter_ca_mode and call reset_prog_mode after returning from the shell.

setupterm reads in the terminfo database, initializing the terminfo structures, but does not set up the

output virtualization structures used by curses. Its parameters follow.

term is the terminal type, a character string. If term is null, the environment variable TERM is

read.

filedes

is the file descriptor used for getting and setting terminal I/O modes.

Higher-level applications use newterm(3X) to initialize the terminal, passing an output

stream rather than a descriptor. In curses, the two are the same because newterm calls

setupterm, passing the file descriptor derived from its output stream parameter.

errret points to an optional location where an error status can be returned to the caller. If errret is

not null, then setupterm returns OK or ERR and stores a status value in the integer pointed to

by errret. A return value of OK combined with status of 1 in errret is normal.

If ERR is returned, examine errret:

1 means that the terminal is hardcopy, and cannot be used for curses applications.

setupterm determines if the entry is a hardcopy type by checking the hardcopy (hc)

capability.

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

0 means that the terminal could not be found, or that it is a generic type, having too little

information for curses applications to run.

setupterm determines if the entry is a generic type by checking the generic_type (gn)

capability.

-1 means that the terminfo database could not be found.

If errret is null, setupterm reports an error message upon finding an error and exits. Thus, the

simplest call is:

setupterm((char *)0, 1, (int *)0);

which uses all the defaults and sends the output to stdout.

The Terminal State
setupterm stores its information about the terminal in a TERMINAL structure pointed to by the global

variable cur_term. If it detects an error, or decides that the terminal is unsuitable (hardcopy or

generic), it discards this information, making it not available to applications.

If setupterm is called repeatedly for the same terminal type, it will reuse the information. It maintains

only one copy of a given terminal’s capabilities in memory. If it is called for different terminal types,

setupterm allocates new storage for each set of terminal capabilities.

set_curterm sets cur_term to nterm, and makes all of the terminfo Boolean, numeric, and string

variables use the values from nterm. It returns the old value of cur_term.

del_curterm frees the space pointed to by oterm and makes it available for further use. If oterm is the

same as cur_term, references to any of the terminfo Boolean, numeric, and string variables thereafter

may refer to invalid memory locations until another setupterm has been called.

restartterm is similar to setupterm and initscr, except that it is called after restoring memory to a

previous state (for example, when reloading a game saved as a core image dump). restartterm assumes

that the windows and the input and output options are the same as when memory was saved, but the

terminal type and baud rate may be different. Accordingly, restartterm saves various terminal state

bits, calls setupterm, and then restores the bits.

Formatting Output
tparm instantiates the string str with parameters pi. A pointer is returned to the result of str with the

parameters applied. Application developers should keep in mind these quirks of the interface:

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

+o Although tparm’s actual parameters may be integers or strings, the prototype expects long

(integer) values.

+o Aside from the set_attributes (sgr) capability, most terminal capabilities require no more than one

or two parameters.

+o Padding information is ignored by tparm; it is interpreted by tputs.

+o The capability string is null-terminated. Use "\200" where an ASCII NUL is needed in the output.

tiparm is a newer form of tparm which uses stdarg.h rather than a fixed-parameter list. Its numeric

parameters are ints rather than longs.

Both tparm and tiparm assume that the application passes parameters consistent with the terminal

description. Two extensions are provided as alternatives to deal with untrusted data.

+o tiparm_s is an extension which is a safer formatting function than tparm or tiparm, because it

allows the developer to tell the curses library how many parameters to expect in the parameter list,

and which may be string parameters.

The mask parameter has one bit set for each of the parameters (up to 9) passed as char pointers

rather than numbers.

+o The extension tiscan_s allows the application to inspect a formatting capability to see what the

curses library would assume.

Output Functions
String capabilities can contain padding information, a time delay (accommodating performance

limitations of hardware terminals) expressed as $<n>, where n is a nonnegative integral count of

milliseconds. If n exceeds 30,000 (thirty seconds), it is capped at that value.

tputs interprets time-delay information in the string str and outputs it, executing the delays:

+o The str parameter must be a terminfo string variable or the return value of tparm, tiparm, tgetstr,

or tgoto.

The tgetstr and tgoto functions are part of the termcap interface, which happens to share these

function names with the terminfo API.

+o affcnt is the number of lines affected, or 1 if not applicable.

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

+o putc is a putchar-like function to which the characters are passed, one at a time.

If tputs processes a time-delay, it uses the delay_output(3X) function, routing any resulting

padding characters through this function.

putp calls "tputs(str, 1, putchar)". The output of putp always goes to stdout, rather than the filedes

specified in setupterm.

vidputs displays the string on the terminal in the video attribute mode attrs, which is any combination

of the attributes listed in curses(3X). The characters are passed to the putchar-like function putc.

vidattr is like vidputs, except that it outputs through putchar(3).

vid_attr and vid_puts correspond to vidattr and vidputs, respectively. They use multiple parameters to

represent the character attributes and color; namely,

+o attrs, of type attr_t, for the attributes and

+o pair, of type short, for the color pair number.

Use the attribute constants prefixed with "WA_" with vid_attr and vid_puts.

X/Open Curses reserves the opts argument for future use, saying that applications must provide a null

pointer for that argument; but see section "EXTENSIONS" below.

mvcur provides low-level cursor motion. It takes effect immediately (rather than at the next refresh).

Unlike the other low-level output functions, which either write to the standard output or pass an output

function parameter, mvcur uses an output file descriptor derived from the output stream parameter of

newterm(3X).

While putp and mvcur are low-level functions that do not use high-level curses state, ncurses declares

them in curses.h because System V did this (see section "HISTORY" below).

Terminal Capability Functions
tigetflag, tigetnum, and tigetstr return the value of the capability corresponding to the terminfo

cap-code, such as xenl, passed to them. The cap-code for each capability is given in the table column

entitled cap-code code in the capabilities section of terminfo(5).

These functions return special values to denote errors.

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

tigetflag returns

-1 if cap-code is not a Boolean capability, or

0 if it is canceled or absent from the terminal description.

tigetnum returns

-2 if cap-code is not a numeric capability, or

-1 if it is canceled or absent from the terminal description.

tigetstr returns

(char *)-1
if cap-code is not a string capability, or

0 if it is canceled or absent from the terminal description.

Terminal Capability Names
These null-terminated arrays contain

+o the short terminfo names ("codes"),

+o the termcap names ("names"), and

+o the long terminfo names ("fnames")

for each of the predefined terminfo variables:

const char *boolnames[], *boolcodes[], *boolfnames[]
const char *numnames[], *numcodes[], *numfnames[]
const char *strnames[], *strcodes[], *strfnames[]

Releasing Memory
Each successful call to setupterm allocates memory to hold the terminal description. As a side effect, it

sets cur_term to point to this memory. If an application calls

del_curterm(cur_term);

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

the memory will be freed.

The formatting functions tparm and tiparm extend the storage allocated by setupterm as follows.

+o They add the "static" terminfo variables [a-z]. Before ncurses 6.3, those were shared by all

screens. With ncurses 6.3, those are allocated per screen. See terminfo(5).

+o To improve performance, ncurses 6.3 caches the result of analyzing terminfo strings for their

parameter types. That is stored as a binary tree referenced from the TERMINAL structure.

The higher-level initscr and newterm functions use setupterm. Normally they do not free this memory,

but it is possible to do that using the delscreen(3X) function.

RETURN VALUE
X/Open Curses defines no failure conditions. In ncurses,

del_curtem
fails if its terminal parameter is null.

putp calls tputs, returning the same error codes.

restartterm
fails if the associated call to setupterm returns an error.

setupterm
fails if it cannot allocate enough memory, or create the initial windows (stdscr, curscr, and

newscr) Other error conditions are documented above.

tparm
returns a null pointer if the capability would require unexpected parameters; that is, too many,

too few, or incorrect types (strings where integers are expected, or vice versa).

tputs fails if the string parameter is null. It does not detect I/O errors: X/Open Curses states that tputs
ignores the return value of the output function putc.

NOTES
The vid_attr function in ncurses is a special case. It was originally implemented based on a draft of

X/Open Curses, as a macro, before other parts of the ncurses wide-character API were developed, and

unlike the other wide-character functions, is also provided in the non-wide-character configuration.

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

EXTENSIONS
The functions marked as extensions were designed for ncurses, and are not found in SVr4 curses,

4.4BSD curses, or any other previous curses implementation.

ncurses allows opts to be a pointer to int, which overrides the pair (short) argument.

PORTABILITY
setterm is not described by X/Open and must be considered non-portable. All other functions are as

described by X/Open.

Compatibility Macros
This implementation provides a few macros for compatibility with systems before SVr4 (see section

"HISTORY" below). They include Bcrmode, Bfixterm, Bgettmode, Bnocrmode, Bresetterm,

Bsaveterm, and Bsetterm.

In SVr4, these are found in curses.h, but except for setterm, are likewise macros. The one function,

setterm, is mentioned in the manual page. It further notes that setterm was replaced by setupterm,

stating that the call

setupterm(term, 1, (int *)0)

provides the same functionality as setterm(term), discouraging the latter for new programs. ncurses

implements each of these symbols as macros for BSD curses compatibility.

Legacy Data
setupterm copies the terminal name to the array ttytype. This is not part of X/Open Curses, but is

assumed by some applications.

Other implementions may not declare the capability name arrays. Some provide them without

declaring them. X/Open Curses does not specify them.

Extended terminal capability names, as defined by "tic -x", are not stored in the arrays described here.

Output Buffering
Older versions of ncurses assumed that the file descriptor passed to setupterm from initscr or newterm
uses buffered I/O, and would write to the corresponding stream. In addition to the limitation that the

terminal was left in block-buffered mode on exit (like System V curses), it was problematic because

ncurses did not allow a reliable way to clean up on receiving SIGTSTP.

The current version (ncurses6) uses output buffers managed directly by ncurses. Some of the low-level

functions described in this manual page write to the standard output. They are not signal-safe. The

high-level functions in ncurses employ alternate versions of these functions using the more reliable

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

buffering scheme.

Function Prototypes
The X/Open Curses prototypes are based on the SVr4 curses header declarations, which were defined

at the same time the C language was first standardized in the late 1980s.

+o X/Open Curses uses const less effectively than a later design might, sometimes applying it

needlessly to values that are already constant, and in most cases overlooking parameters that

normally would use const. Passing const-qualified parameters to functions that do not declare

them const may prevent the program from compiling. On the other hand, "writable strings" are an

obsolescent feature.

As an extension, this implementation can be configured to change the function prototypes to use

the const keyword. The ncurses ABI 6 enables this feature by default.

+o X/Open Curses prototypes tparm with a fixed number of parameters, rather than a variable

argument list.

This implementation uses a variable argument list, but can be configured to use the fixed-

parameter list. Portable applications should provide nine parameters after the format; zeroes are

fine for this purpose.

In response to review comments by Thomas E. Dickey, X/Open Curses Issue 7 proposed the

tiparm function in mid-2009.

While tiparm is always provided in ncurses, the older form is only available as a build-time

configuration option. If not specially configured, tparm is the same as tiparm.

Both forms of tparm have drawbacks:

+o Most of the calls to tparm use only one or two parameters. Passing nine on each call is awkward.

Using long for the numeric parameter type is a workaround to make the parameter use the same

amount of stack as a pointer. That approach dates back to the mid-1980s, before C was

standardized. Since then, there is a standard (and pointers are not required to fit in a long).

+o Providing the right number of parameters for a variadic function such as tiparm can be a problem,

in particular for string parameters. However, only a few terminfo capabilities use string

parameters (for instance, the ones used for programmable function keys).

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

The ncurses library checks usage of these capabilities, and returns an error if the capability

mishandles string parameters. But it cannot check if a calling program provides strings in the

right places for the tparm calls.

The tput(1) program checks its use of these capabilities with a table, so that it calls tparm
correctly.

Special TERM treatment
If configured to use the terminal driver, as with the MinGW port,

+o setupterm interprets a missing/empty TERM variable as the special value "unknown".

SVr4 curses uses the special value "dumb".

The difference between the two is that the former uses the generic_type (gn) terminfo capability,

while the latter does not. A generic terminal is unsuitable for full-screen applications.

+o setupterm allows explicit use of the the windows console driver by checking if $TERM is set to

"#win32con" or an abbreviation of that string.

Other Portability Issues
In SVr4, set_curterm returns an int, OK or ERR. We have chosen to implement the X/Open Curses

semantics.

In SVr4, the third argument of tputs has the type "int (*putc)(char)".

At least one implementation of X/Open Curses (Solaris) returns a value other than OK or ERR from

tputs. It instead returns the length of the string, and does no error checking.

X/Open Curses notes that after calling mvcur, the curses state may not match the actual terminal state,

and that an application should touch and refresh the window before resuming normal curses calls. Both

ncurses and SVr4 curses implement mvcur using the SCREEN data allocated in either initscr or

newterm. So though it is documented as a terminfo function, mvcur is really a curses function that is

not well specified.

X/Open Curses states that the old location must be given for mvcur to accommodate terminals that lack

absolute cursor positioning. ncurses allows the caller to use -1 for either or both old coordinates. The

-1 tells ncurses that the old location is unknown, and that it must use only absolute motion, as with the

cursor_address (cup) capability, rather than the least costly combination of absolute and relative

motion.

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

HISTORY
SVr2 (1984) introduced the terminfo feature. Its programming manual mentioned the following low-

level functions.

Function Description

fixterm restore terminal to "in curses"

state

gettmode establish current terminal

modes

mvcur low level cursor

motion

putp use tputs to send characters via

putchar

resetterm set terminal modes to "out of curses"

state

resetty reset terminal flags to stored

value

saveterm save current modes as "in curses"

state

savetty store current terminal

flags

setterm establish terminal with given

type

setuptermestablish terminal with given

type

tparm interpolate parameters into string

capability

tputs apply padding information to a

string

vidattr like vidputs, but output through

putchar

vidputs write string to terminal, applying specified

attributes

The programming manual also mentioned functions provided for termcap compatibility (commenting

that they "may go away at a later date").

FunctionDescription
--

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

tgetent look up termcap entry for given

name

tgetflag get Boolean entry for given

id

tgetnum get numeric entry for given

id

tgetstr get string entry for given

id

tgoto apply parameters to given

capability

tputs write characters via a function parameter, applying

padding

Early terminfo programs obtained capability values from the TERMINAL structure initialized by

setupterm.

SVr3 (1987) extended terminfo by adding functions to retrieve capability values (like the termcap

interface), and reusing tgoto and tputs.

FunctionDescription
--

tigetflag get Boolean entry for given

id

tigetnumget numeric entry for given

id

tigetstr get string entry for given

id

SVr3 also replaced several of the SVr2 terminfo functions that had no counterpart in the termcap

interface, documenting them as obsolete.

Function Replaced
by

--

crmode cbreak

fixterm reset_prog_mode

gettmode n/a

nocrmodenocbreak

resetterm reset_shell_mode

saveterm def_prog_mode

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

setterm setupterm

SVr3 kept the mvcur, vidattr, and vidputs functions, along with putp, tparm, and tputs. The latter were

needed to support padding, and to handle capabilities accessed by functions such as vidattr (which used

more than the two parameters supported by tgoto).

SVr3 introduced the functions for switching between terminal descriptions; for example, set_curterm.

Some changes reflected incremental improvements to the SVr2 library.

+o The TERMINAL type definition was introduced in SVr3.01, for the term structure provided in

SVr2.

+o Various global variables such as boolnames were mentioned in the programming manual at this

point, though the variables had been provided in SVr2.

SVr4 (1989) added the vid_attr and vid_puts functions.

Other low-level functions are declared in the curses header files of Unix systems, but none are

documented. Those noted as "obsolete" by SVr3 remained in use by System V’s vi(1) editor.

SEE ALSO
curses(3X), curs_initscr(3X), curs_kernel(3X), curs_memleaks(3X), curs_termcap(3X),

curs_variables(3X), putc(3), term_variables(3X), terminfo(5)

curs_terminfo(3X) Library calls curs_terminfo(3X)

ncurses 6.5 2024-04-13 curs_terminfo(3X)

