
NAME
timerfd, timerfd_create, timerfd_gettime, timerfd_settime - timers with file descriptor semantics

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/timerfd.h>

int

timerfd_create(int clockid, int flags);

int

timerfd_gettime(int fd, struct itimerspec *curr_value);

int

timerfd_settime(int fd, int flags, const struct itimerspec *new_value, struct itimerspec *old_value);

DESCRIPTION
The timerfd system calls operate on timers, identified by special timerfd file descriptors. These calls are

analogous to timer_create(), timer_gettime(), and timer_settime() per-process timer functions, but use a

timerfd descriptor in place of timerid.

All timerfd descriptors possess traditional file descriptor semantics; they may be passed to other

processes, preserved across fork(2), and monitored via kevent(2), poll(2), or select(2). When a timerfd
descriptor is no longer needed, it may be disposed of using close(2).

timerfd_create() Initialize a timerfd object and return its file descriptor. The clockid argument

specifies the clock used as a timing base and may be:

CLOCK_REALTIME Increments as a wall clock should.

CLOCK_MONOTONIC Increments monotonically in SI seconds.

The flags argument may contain the result of or’ing the following values:

TFD_CLOEXEC The newly generated file descriptor will close-on-exec.

TFD_NONBLOCK Do not block on read/write operations.

timerfd_gettime() Retrieve the current state of the timer denoted by fd. The result is stored in

curr_value as a struct itimerspec. The it_value and it_interval members of

TIMERFD(2) FreeBSD System Calls Manual TIMERFD(2)

FreeBSD 14.0-RELEASE-p6 May 21, 2023 FreeBSD 14.0-RELEASE-p6



curr_value represent the relative time until the next expiration and the interval

reload value last set by timerfd_settime(), respectively.

timerfd_settime() Update the timer denoted by fd with the struct itimerspec in new_value. The

it_value member of new_value should contain the amount of time before the timer

expires, or zero if the timer should be disarmed. The it_interval member should

contain the reload time if an interval timer is desired.

The previous timer state will be stored in old_value given old_value is not NULL.

The flags argument may contain the result of or’ing the following values:

TFD_TIMER_ABSTIME Expiration will occur at the absolute time

provided in new_value. Normally, new_value

represents a relative time compared to the

timer’s clockid clock.

TFD_TIMER_CANCEL_ON_SET If clockid has been set to CLOCK_REALTIME

and the realtime clock has experienced a

discontinuous jump, then the timer will be

canceled and the next read(2) will fail with

ECANCELED.

File operations have the following semantics:

read(2)

Transfer the number of timer expirations that have occurred since the last successful read(2) or

timerfd_settime() into the output buffer of size uint64_t. If the expiration counter is zero, read(2)

blocks until a timer expiration occurs unless TFD_NONBLOCK is set, where EAGAIN is

returned.

poll(2)

The file descriptor is readable when its timer expiration counter is greater than zero.

ioctl(2)

FIOASYNC int

A non-zero input will set the FASYNC flag. A zero input will clear the FASYNC

flag.

FIONBIO int

TIMERFD(2) FreeBSD System Calls Manual TIMERFD(2)

FreeBSD 14.0-RELEASE-p6 May 21, 2023 FreeBSD 14.0-RELEASE-p6



A non-zero input will set the FNONBLOCK flag. A zero input will clear the

FNONBLOCK flag.

RETURN VALUES
The timerfd_create() system call creates a timerfd object and returns its file descriptor. If an error

occurs, -1 is returned and the global variable errno is set to indicate the error.

The timerfd_gettime() and timerfd_settime() system calls return 0 on success. If an error occurs, -1 is

returned and the global variable errno is set to indicate the error.

ERRORS
The timerfd_create() system call fails if:

[EINVAL] The specified clockid is not supported.

[EINVAL] The provided flags are invalid.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[ENOMEM] The kernel failed to allocate enough memory for the timer.

Both timerfd_gettime() and timerfd_settime() system calls fail if:

[EBADF] The provided fd is invalid.

[EFAULT] The addresses provided by curr_value, new_value, or old_value are invalid.

[EINVAL] The provided fd is valid, but was not generated by timerfd_create().

The following errors only apply to timerfd_settime():

[EINVAL] The provided flags are invalid.

[EINVAL] A nanosecond field in the new_value argument specified a value less than zero, or

greater than or equal to 10^9.

[ECANCELED] The timer was created with the clock ID CLOCK_REALTIME, was configured

with the TFD_TIMER_CANCEL_ON_SET flag, and the system realtime clock

TIMERFD(2) FreeBSD System Calls Manual TIMERFD(2)

FreeBSD 14.0-RELEASE-p6 May 21, 2023 FreeBSD 14.0-RELEASE-p6



experienced a discontinuous change without being read.

A read from a timerfd object fails if:

[EAGAIN] The timer’s expiration counter is zero and the timerfd object is is set for non-

blocking I/O.

[ECANCELED] The timer was created with the clock ID CLOCK_REALTIME, was configured

with the TFD_TIMER_CANCEL_ON_SET flag, and the system realtime clock

experienced a discontinuous change.

[EINVAL] The size of the read buffer is not large enough to hold the uint64_t sized timer

expiration counter.

SEE ALSO
eventfd(2), kqueue(2), poll(2), read(2), timer_create(2), timer_gettime(2), timer_settime(2)

STANDARDS
The timerfd system calls originated from Linux and are non-standard.

HISTORY
The timerfd facility was originally ported to FreeBSD’s Linux compatibility layer by Dmitry Chagin

<dchagin@FreeBSD.org> in FreeBSD 12.0. It was revised and adapted to be native by Jake Freeland

<jfree@FreeBSD.org> in FreeBSD 14.0.

TIMERFD(2) FreeBSD System Calls Manual TIMERFD(2)

FreeBSD 14.0-RELEASE-p6 May 21, 2023 FreeBSD 14.0-RELEASE-p6


