
NAME
tracker-sparql - Use SparQL to query the Tracker databases.

SYNOPSIS
tracker sparql -q <sparql> [-u] | -f <file>

tracker sparql -t [class] [-s <needle>] [-p]

tracker sparql [-c] [-p] [-x] [-n [class]] [-i [property]] [-s <needle>]

tracker sparql [--get-longhand <class>] [--get-shorthand <class>]

DESCRIPTION
This command allows probing of the current database schema (also known as ontology) and running

low level queries or updates on the data set. In terms of the database ontology, it’s easy to find out what

properties are indexed for speed, or notified on changes, what classes are available and the properties

belonging to those classes. There are also visual tools to display an ascii tree layout of the classes and

their relationships to each other.

When the caller runs a query, the query is in RDF and SPARQL. This can be done two ways. Either by

providing a file with the query or by providing a string with the sparql query.

The file argument can be either a local path or a URI. It also does not have to be an absolute path.

OPTIONS
-f, --file=<file>

Use a file with SPARQL content to query or update.

-q, --query=<sparql>

Use a sparql string to query the database with.

-u, --update
This has to be used with --query. This tells "tracker sparql" to use the SPARQL update extensions

so it knows it isn’t a regular data lookup request. So if your query is intended to change data in the

database, this option is needed.

-c, --list-classes
Returns a list of classes which describe the ontology used for storing data. These classes are also

used in queries. For example, http://www.w3.org/2000/01/rdf-schema#Resource is one of many

classes which should be returned here.

tracker-sparql(1) User Commands tracker-sparql(1)

GNU July 2009 tracker-sparql(1)

-x, --list-class-prefixes
Returns a list of classes and their related prefixes. Prefixes are used to make querying a lot simpler

and are much like an alias. For example, http://www.w3.org/2000/01/rdf-schema#Resource has the

prefix rdfs so queries can be cut down to:

"SELECT ?u WHERE { ?u a rdfs:Resource }"

-p, --list-properties=[class]

Returns a list of properties which pertain to a class. You can use both formats here for the class,

either the full name http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#Video or the

shortened prefix name nfo:Video.

This gives the following result:

$ tracker sparql -p nfo:Video

Properties: 2

http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#frameRate

http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#frameCount

These properties nfo:frameRate and nfo:frameCount can then be used in queries.

See also --tree and --query.

-n, --list-notifies=[class]

Returns a list of classes which are notified over D-Bus about any changes that occur in the

database. The class does not have to be supplied here. This is optional and filters the results

according to any argument supplied. With no class, all classes are listed.

-i, --list-indexes=[property]

Returns a list of properties which are indexed in the database. Indexes improves query speed but

also add an indexing penalty. The property does not have to be supplied here. This is optional and

filters the results according to any argument supplied. With no property, all properties are listed.

-t, --tree=[class]

Prints a tree showing all parent classes of class in the ontology. The class can be provided in

tracker-sparql(1) User Commands tracker-sparql(1)

GNU July 2009 tracker-sparql(1)

shorthand or longhand (see --get-shorthand and --get-longhand for details). For example:

$ tracker sparql -t nmo:MMSMessage

ROOT

+-- rdfs:Resource (C)

| +-- nie:InformationElement (C)

| | +-- nfo:Document (C)

| | | +-- nfo:TextDocument (C)

| | | | ‘-- nmo:Message (C)

| | | | | +-- nmo:PhoneMessage (C)

| | | | | | ‘-- nmo:MMSMessage (C)

If no class is given, the entire tree is shown.

The --search command line option can be used to highlight parts of the tree you’re looking for. The

search is case insensitive.

The --properties command line option can be used to show properties for each class displayed, for

example:

$ tracker sparql -t nfo:FileDataObject -p

ROOT

+-- rdfs:Resource (C)

| --> http://purl.org/dc/elements/1.1/contributor (P)

| --> http://purl.org/dc/elements/1.1/coverage (P)

| --> http://purl.org/dc/elements/1.1/creator (P)

| --> http://purl.org/dc/elements/1.1/date (P)

| --> http://purl.org/dc/elements/1.1/description (P)

| --> http://purl.org/dc/elements/1.1/format (P)

| --> http://purl.org/dc/elements/1.1/identifier (P)

| --> http://purl.org/dc/elements/1.1/language (P)

| --> http://purl.org/dc/elements/1.1/publisher (P)

| --> http://purl.org/dc/elements/1.1/relation (P)

| --> http://purl.org/dc/elements/1.1/rights (P)

| --> http://purl.org/dc/elements/1.1/source (P)

| --> http://purl.org/dc/elements/1.1/subject (P)

| --> http://purl.org/dc/elements/1.1/title (P)

| --> http://purl.org/dc/elements/1.1/type (P)

| --> nao:deprecated (P)

| --> nao:hasTag (P)

tracker-sparql(1) User Commands tracker-sparql(1)

GNU July 2009 tracker-sparql(1)

| --> nao:identifier (P)

| --> nao:isRelated (P)

| --> nao:lastModified (P)

| --> nao:numericRating (P)

| --> rdf:type (P)

| --> rdfs:comment (P)

| --> rdfs:label (P)

| --> tracker:added (P)

| --> tracker:damaged (P)

| --> tracker:modified (P)

| +-- nie:DataObject (C)

| | --> nfo:belongsToContainer (P)

| | --> nie:byteSize (P)

| | --> nie:created (P)

| | --> nie:dataSource (P)

| | --> nie:interpretedAs (P)

| | --> nie:isPartOf (P)

| | --> nie:lastRefreshed (P)

| | --> nie:url (P)

| | --> tracker:available (P)

| | +-- nfo:FileDataObject (C)

| | | --> nfo:fileCreated (P)

| | | --> nfo:fileLastAccessed (P)

| | | --> nfo:fileLastModified (P)

| | | --> nfo:fileName (P)

| | | --> nfo:fileOwner (P)

| | | --> nfo:fileSize (P)

| | | --> nfo:hasHash (P)

| | | --> nfo:permissions (P)

-s, --search=<needle>

Returns a list of classes and properties which partially match needle in the ontology. This is a case

insensitive match, for example:

$ tracker sparql -s text

Classes: 4

http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#TextDocument

http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#PlainTextDocument

tracker-sparql(1) User Commands tracker-sparql(1)

GNU July 2009 tracker-sparql(1)

http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#PaginatedTextDocument

http://www.tracker-project.org/temp/nmm#SynchronizedText

Properties: 4

http://www.tracker-project.org/ontologies/tracker#fulltextIndexed

http://www.semanticdesktop.org/ontologies/2007/01/19/nie#plainTextContent

http://www.semanticdesktop.org/ontologies/2007/03/22/nmo#plainTextMessageContent

http://www.tracker-project.org/temp/scal#textLocation

See also --tree.

--get-shorthand=<class>

Returns the shorthand for a class given by a URL. For example:

$ tracker sparql --get-shorthand http://www.semanticdesktop.org/ontologies/2007/03/22/nmo#plainTextMessageContent

nmo:plainTextMessageContent

--get-longhand=<class>

Returns the longhand for a class given in the form of CLASS:PROPERTY. For example:

$ tracker sparql --get-longhand nmm:MusicPiece

http://www.tracker-project.org/temp/nmm#MusicPiece

ENVIRONMENT
TRACKER_SPARQL_BACKEND

This option allows you to choose which backend you use for connecting to the database. This

choice can limit your functionality. There are three settings.

With "direct" the connection to the database is made directly to the file itself on the disk, there is

no intermediary daemon or process. The "direct" approach is purely read-only.

With "bus" the tracker-store process is used to liase with the database queuing all requests and

managing the connections via an IPC / D-Bus. This adds a small overhead BUT this is the only

approach you can use if you want to write to the database.

With "auto" the backend is decided for you, much like it would be if this environment variable was

undefined.

tracker-sparql(1) User Commands tracker-sparql(1)

GNU July 2009 tracker-sparql(1)

EXAMPLES
List all classes

$ tracker sparql -q "SELECT ?cl WHERE { ?cl a rdfs:Class }"

List all properties for the Resources class (see --list-properties)

$ tracker sparql -q "SELECT ?prop WHERE {

?prop a rdf:Property ;

rdfs:domain <http://www.w3.org/2000/01/rdf-schema#Resource>

}"

List all class namespace prefixes

$ tracker sparql -q "SELECT ?prefix ?ns WHERE {

?ns a tracker:Namespace ;

tracker:prefix ?prefix

}"

List all music files

$ tracker sparql -q "SELECT ?song WHERE { ?song a nmm:MusicPiece }"

List all music albums, showing title, track count, and length in seconds.

$ tracker sparql -q "SELECT ?title COUNT(?song)

AS songs

SUM(?length) AS totallength

WHERE {

?album a nmm:MusicAlbum ;

nie:title ?title .

?song nmm:musicAlbum ?album ;

nfo:duration ?length

} GROUP BY ?album"

tracker-sparql(1) User Commands tracker-sparql(1)

GNU July 2009 tracker-sparql(1)

List all music from a particular artist

$ tracker sparql -q "SELECT ?song ?title WHERE {

?song nmm:performer [nmm:artistName ’Artist Name’] ;

nie:title ?title

}"

Set the played count for a song

$ tracker sparql -u -q "DELETE {

<file:///home/user/Music/song.mp3> nie:usageCounter ?count

} WHERE {

<file:///home/user/Music/song.mp3> nie:usageCounter ?count

} INSERT {

<file:///home/user/Music/song.mp3> nie:usageCounter 42

}"

List all image files

$ tracker sparql -q "SELECT ?image WHERE { ?image a nfo:Image }"

List all image files with a specific tag

$ tracker sparql -q "SELECT ?image WHERE {

?image a nfo:Image ;

nao:hasTag [nao:prefLabel ’tag’]

}"

List all image files created on a specific month and order by date

$ tracker sparql -q "SELECT ?image ?date WHERE {

?image a nfo:Image ;

nie:contentCreated ?date .

FILTER (?date >= ’2008-07-01T00:00:00’ &&

?date < ’2008-08-01T00:00:00’)

} ORDER BY ?date"

tracker-sparql(1) User Commands tracker-sparql(1)

GNU July 2009 tracker-sparql(1)

SEE ALSO
tracker-sql(1), tracker-store(1), tracker-info(1).

http://nepomuk.semanticdesktop.org/

http://www.w3.org/TR/rdf-sparql-query/

tracker-sparql(1) User Commands tracker-sparql(1)

GNU July 2009 tracker-sparql(1)

