
NAME
tty - general terminal interface

SYNOPSIS
#include <sys/ioctl.h>

DESCRIPTION
This section describes the interface to the terminal drivers in the system.

Terminal Special Files
Each hardware terminal port on the system usually has a terminal special device file associated with it in

the directory ‘‘/dev/’’ (for example, ‘‘/dev/tty03’’). When a user logs into the system on one of these

hardware terminal ports, the system has already opened the associated device and prepared the line for

normal interactive use (see getty(8).) There is also a special case of a terminal file that connects not to a

hardware terminal port, but to another program on the other side. These special terminal devices are

called ptys and provide the mechanism necessary to give users the same interface to the system when

logging in over a network (using telnet(1) for example). Even in these cases the details of how the

terminal file was opened and set up is already handled by special software in the system. Thus, users do

not normally need to worry about the details of how these lines are opened or used. Also, these lines are

often used for dialing out of a system (through an out-calling modem), but again the system provides

programs that hide the details of accessing these terminal special files (see tip(1)).

When an interactive user logs in, the system prepares the line to behave in a certain way (called a line

discipline), the particular details of which is described in stty(1) at the command level, and in termios(4)

at the programming level. A user may be concerned with changing settings associated with his

particular login terminal and should refer to the preceding man pages for the common cases. The

remainder of this man page is concerned with describing details of using and controlling terminal

devices at a low level, such as that possibly required by a program wishing to provide features similar to

those provided by the system.

Terminal File Operations
All of the following operations are invoked using the ioctl(2) system call. Refer to that man page for a

description of the request and argp parameters. In addition to the ioctl requests defined here, the specific

line discipline in effect will define other requests specific to it (actually termios(4) defines them as

function calls, not ioctl requests.) The following section lists the available ioctl requests. The name of

the request, a description of its purpose, and the typed argp parameter (if any) are listed. For example,

the first entry says

TIOCSPGRP int *tpgrp

TTY(4) FreeBSD Kernel Interfaces Manual TTY(4)

FreeBSD 14.0-RELEASE-p6 April 3, 2022 FreeBSD 14.0-RELEASE-p6



and would be called on the terminal associated with file descriptor zero by the following code fragment:

int pgrp;

pgrp = getpgrp();

ioctl(0, TIOCSPGRP, &pgrp);

Terminal File Request Descriptions
TIOCSETD int *ldisc

This call is obsolete but left for compatibility. Before FreeBSD 8.0, it would change to

the new line discipline pointed to by ldisc.

TIOCGETD int *ldisc

Return the current line discipline in the integer pointed to by ldisc.

TIOCSBRK void

Set the terminal hardware into BREAK condition.

TIOCCBRK void

Clear the terminal hardware BREAK condition.

TIOCSDTR void

Assert data terminal ready (DTR).

TIOCCDTR void

Clear data terminal ready (DTR).

TIOCGPGRP int *tpgrp

Return the current process group with which the terminal is associated in the integer

pointed to by tpgrp. This is the underlying call that implements the termios(4)

tcgetattr() call.

TIOCSPGRP int *tpgrp

Associate the terminal with the process group (as an integer) pointed to by tpgrp. This

is the underlying call that implements the termios(4) tcsetattr() call.

TIOCGETA struct termios *term

Place the current value of the termios state associated with the device in the termios

structure pointed to by term. This is the underlying call that implements the termios(4)

tcgetattr() call.

TTY(4) FreeBSD Kernel Interfaces Manual TTY(4)

FreeBSD 14.0-RELEASE-p6 April 3, 2022 FreeBSD 14.0-RELEASE-p6



TIOCSETA struct termios *term

Set the termios state associated with the device immediately. This is the underlying call

that implements the termios(4) tcsetattr() call with the TCSANOW option.

TIOCSETAW struct termios *term

First wait for any output to complete, then set the termios state associated with the

device. This is the underlying call that implements the termios(4) tcsetattr() call with

the TCSADRAIN option.

TIOCSETAF struct termios *term

First wait for any output to complete, clear any pending input, then set the termios state

associated with the device. This is the underlying call that implements the termios(4)

tcsetattr() call with the TCSAFLUSH option.

TIOCOUTQ int *num

Place the current number of characters in the output queue in the integer pointed to by

num.

TIOCSTI char *cp

Simulate typed input. Pretend as if the terminal received the character pointed to by cp.

TIOCNOTTY void

In the past, when a process that did not have a controlling terminal (see The Controlling

Terminal in termios(4)) first opened a terminal device, it acquired that terminal as its

controlling terminal. For some programs this was a hazard as they did not want a

controlling terminal in the first place, and this provides a mechanism to disassociate the

controlling terminal from the calling process. It must be called by opening the file

/dev/tty and calling TIOCNOTTY on that file descriptor.

The current system does not allocate a controlling terminal to a process on an open()

call: there is a specific ioctl called TIOCSCTTY to make a terminal the controlling

terminal. In addition, a program can fork() and call the setsid() system call which will

place the process into its own session - which has the effect of disassociating it from the

controlling terminal. This is the new and preferred method for programs to lose their

controlling terminal.

However, environmental restrictions may prohibit the process from being able to fork()

and call the setsid() system call to disassociate it from the controlling terminal. In this

case, it must use TIOCNOTTY.

TTY(4) FreeBSD Kernel Interfaces Manual TTY(4)

FreeBSD 14.0-RELEASE-p6 April 3, 2022 FreeBSD 14.0-RELEASE-p6



TIOCSTOP void

Stop output on the terminal (like typing ^S at the keyboard).

TIOCSTART void

Start output on the terminal (like typing ^Q at the keyboard).

TIOCSCTTY void

Make the terminal the controlling terminal for the process (the process must not

currently have a controlling terminal).

TIOCDRAIN void

Wait until all output is drained, or until the drain wait timeout expires.

TIOCGDRAINWAIT int *timeout

Return the current drain wait timeout in seconds.

TIOCSDRAINWAIT int *timeout

Set the drain wait timeout in seconds. A value of zero disables timeouts. The default

drain wait timeout is controlled by the tunable sysctl(8) OID kern.tty_drainwait.

TIOCEXCL void

Set exclusive use on the terminal. No further opens are permitted except by root. Of

course, this means that programs that are run by root (or setuid) will not obey the

exclusive setting - which limits the usefulness of this feature.

TIOCNXCL void

Clear exclusive use of the terminal. Further opens are permitted.

TIOCFLUSH int *what

If the value of the int pointed to by what contains the FREAD bit as defined in

<sys/file.h>, then all characters in the input queue are cleared. If it contains the

FWRITE bit, then all characters in the output queue are cleared. If the value of the

integer is zero, then it behaves as if both the FREAD and FWRITE bits were set (i.e.,

clears both queues).

TIOCGWINSZ struct winsize *ws

Put the window size information associated with the terminal in the winsize structure

pointed to by ws. The window size structure contains the number of rows and columns

(and pixels if appropriate) of the devices attached to the terminal. It is set by user

software and is the means by which most full-screen oriented programs determine the

TTY(4) FreeBSD Kernel Interfaces Manual TTY(4)

FreeBSD 14.0-RELEASE-p6 April 3, 2022 FreeBSD 14.0-RELEASE-p6



screen size. The winsize structure is defined in <sys/ioctl.h>.

TIOCSWINSZ struct winsize *ws

Set the window size associated with the terminal to be the value in the winsize structure

pointed to by ws (see above).

TIOCCONS int *on

If on points to a non-zero integer, redirect kernel console output (kernel printf’s) to this

terminal. If on points to a zero integer, redirect kernel console output back to the

normal console. This is usually used on workstations to redirect kernel messages to a

particular window.

TIOCMSET int *state

The integer pointed to by state contains bits that correspond to modem state. Following

is a list of defined variables and the modem state they represent:

TIOCM_LE Line Enable.

TIOCM_DTR Data Terminal Ready.

TIOCM_RTS Request To Send.

TIOCM_ST Secondary Transmit.

TIOCM_SR Secondary Receive.

TIOCM_CTS Clear To Send.

TIOCM_CAR Carrier Detect.

TIOCM_CD Carrier Detect (synonym).

TIOCM_RNG

Ring Indication.

TIOCM_RI Ring Indication (synonym).

TIOCM_DSR Data Set Ready.

This call sets the terminal modem state to that represented by state. Not all terminals

may support this.

TIOCMGET int *state

Return the current state of the terminal modem lines as represented above in the integer

pointed to by state.

TIOCMBIS int *state

The bits in the integer pointed to by state represent modem state as described above,

however the state is OR-ed in with the current state.

TTY(4) FreeBSD Kernel Interfaces Manual TTY(4)

FreeBSD 14.0-RELEASE-p6 April 3, 2022 FreeBSD 14.0-RELEASE-p6



TIOCMBIC int *state

The bits in the integer pointed to by state represent modem state as described above,

however each bit which is on in state is cleared in the terminal.

IMPLEMENTATION NOTES
The total number of input and output bytes through all terminal devices are available via the kern.tty_nin

and kern.tty_nout read-only sysctl(8) variables.

SEE ALSO
stty(1), ioctl(2), ng_tty(4), pty(4), termios(4), getty(8)

HISTORY
A console typewriter device /dev/tty and asynchronous communication interfaces /dev/tty[0-5] first

appeared in Version 1 AT&T UNIX.

TTY(4) FreeBSD Kernel Interfaces Manual TTY(4)

FreeBSD 14.0-RELEASE-p6 April 3, 2022 FreeBSD 14.0-RELEASE-p6


