
NAME
cbreak, nocbreak, echo, noecho, halfdelay, intrflush, keypad, meta, nl, nonl, nodelay, notimeout, raw,

noraw, qiflush, noqiflush, timeout, wtimeout, typeahead - curses input options

SYNOPSIS
#include <curses.h>

int cbreak(void);
int nocbreak(void);

int echo(void);
int noecho(void);

int intrflush(WINDOW *win, bool bf);
int keypad(WINDOW *win, bool bf);
int meta(WINDOW *win, bool bf);
int nodelay(WINDOW *win, bool bf);
int notimeout(WINDOW *win, bool bf);

int nl(void);
int nonl(void);

int raw(void);
int noraw(void);

void qiflush(void);
void noqiflush(void);

int halfdelay(int tenths);
void timeout(int delay);
void wtimeout(WINDOW *win, int delay);

int typeahead(int fd);

DESCRIPTION
The ncurses library provides several functions which let an application change the way input from the

terminal is handled. Some are global, applying to all windows. Others apply only to a specific

window. Window-specific settings are not automatically applied to new or derived windows. An

application must apply these to each window, if the same behavior is needed.

curs_inopts(3X) curs_inopts(3X)

curs_inopts(3X)



cbreak/nocbreak
Normally, the tty driver buffers typed characters until a newline or carriage return is typed. The cbreak
routine disables line buffering and erase/kill character-processing (interrupt and flow control characters

are unaffected), making characters typed by the user immediately available to the program. The

nocbreak routine returns the terminal to normal (cooked) mode.

Initially the terminal may or may not be in cbreak mode, as the mode is inherited; therefore, a program

should call cbreak or nocbreak explicitly. Most interactive programs using curses set the cbreak mode.

Note that cbreak overrides raw. [See curs_getch(3X) for a discussion of how these routines interact

with echo and noecho.]

echo/noecho
The echo and noecho routines control whether characters typed by the user are echoed by getch(3X) as

they are typed. Echoing by the tty driver is always disabled, but initially getch is in echo mode, so

characters typed are echoed. Authors of most interactive programs prefer to do their own echoing in a

controlled area of the screen, or not to echo at all, so they disable echoing by calling noecho. [See

curs_getch(3X) for a discussion of how these routines interact with cbreak and nocbreak.]

halfdelay
The halfdelay routine is used for half-delay mode, which is similar to cbreak mode in that characters

typed by the user are immediately available to the program. However, after blocking for tenths tenths

of seconds, ERR is returned if nothing has been typed. The value of tenths must be a number between

1 and 255. Use nocbreak to leave half-delay mode.

intrflush
If the intrflush option is enabled (bf is TRUE), and an interrupt key is pressed on the keyboard

(interrupt, break, quit), all output in the tty driver queue will be flushed, giving the effect of faster

response to the interrupt, but causing curses to have the wrong idea of what is on the screen. Disabling

the option (bf is FALSE) prevents the flush. The default for the option is inherited from the tty driver

settings. The window argument is ignored.

keypad
The keypad option enables the keypad of the user’s terminal. If enabled (bf is TRUE), the user can

press a function key (such as an arrow key) and wgetch(3X) returns a single value representing the

function key, as in KEY_LEFT. If disabled (bf is FALSE), curses does not treat function keys

specially and the program has to interpret the escape sequences itself. If the keypad in the terminal can

be turned on (made to transmit) and off (made to work locally), turning on this option causes the

terminal keypad to be turned on when wgetch(3X) is called. The default value for keypad is FALSE.

meta

curs_inopts(3X) curs_inopts(3X)

curs_inopts(3X)



Initially, whether the terminal returns 7 or 8 significant bits on input depends on the control mode of

the tty driver [see termios(3)]. To force 8 bits to be returned, invoke meta(win, TRUE); this is

equivalent, under POSIX, to setting the CS8 flag on the terminal. To force 7 bits to be returned, invoke

meta(win, FALSE); this is equivalent, under POSIX, to setting the CS7 flag on the terminal. The

window argument, win, is always ignored. If the terminfo capabilities smm (meta_on) and rmm
(meta_off) are defined for the terminal, smm is sent to the terminal when meta(win, TRUE) is called

and rmm is sent when meta(win, FALSE) is called.

nl/nonl
The nl and nonl routines control whether the underlying display device translates the return key into

newline on input.

nodelay
The nodelay option causes getch to be a non-blocking call. If no input is ready, getch returns ERR. If

disabled (bf is FALSE), getch waits until a key is pressed.

notimeout
When interpreting an escape sequence, wgetch(3X) sets a timer while waiting for the next character. If

notimeout(win, TRUE) is called, then wgetch does not set a timer. The purpose of the timeout is to

differentiate between sequences received from a function key and those typed by a user.

raw/noraw
The raw and noraw routines place the terminal into or out of raw mode. Raw mode is similar to cbreak
mode, in that characters typed are immediately passed through to the user program. The differences

are that in raw mode, the interrupt, quit, suspend, and flow control characters are all passed through

uninterpreted, instead of generating a signal. The behavior of the BREAK key depends on other bits in

the tty driver that are not set by curses.

qiflush/noqiflush
When the noqiflush routine is used, normal flush of input and output queues associated with the INTR,

QUIT and SUSP characters will not be done [see termios(3)]. When qiflush is called, the queues will

be flushed when these control characters are read. You may want to call noqiflush in a signal handler

if you want output to continue as though the interrupt had not occurred, after the handler exits.

timeout/wtimeout
The timeout and wtimeout routines set blocking or non-blocking read for a given window. If delay is

negative, blocking read is used (i.e., waits indefinitely for input). If delay is zero, then non-blocking

read is used (i.e., read returns ERR if no input is waiting). If delay is positive, then read blocks for

delay milliseconds, and returns ERR if there is still no input. Hence, these routines provide the same

functionality as nodelay, plus the additional capability of being able to block for only delay

curs_inopts(3X) curs_inopts(3X)

curs_inopts(3X)



milliseconds (where delay is positive).

typeahead
The curses library does "line-breakout optimization" by looking for typeahead periodically while

updating the screen. If input is found, and it is coming from a tty, the current update is postponed until

refresh(3X) or doupdate is called again. This allows faster response to commands typed in advance.

Normally, the input FILE pointer passed to newterm, or stdin in the case that initscr was used, will be

used to do this typeahead checking. The typeahead routine specifies that the file descriptor fd is to be

used to check for typeahead instead. If fd is -1, then no typeahead checking is done.

RETURN VALUE
All routines that return an integer return ERR upon failure and OK (SVr4 specifies only "an integer

value other than ERR") upon successful completion, unless otherwise noted in the preceding routine

descriptions.

X/Open does not define any error conditions. In this implementation, functions with a window

parameter will return an error if it is null. Any function will also return an error if the terminal was not

initialized. Also,

halfdelay
returns an error if its parameter is outside the range 1..255.

PORTABILITY
These functions are described in the XSI Curses standard, Issue 4.

The ncurses library obeys the XPG4 standard and the historical practice of the AT&T curses

implementations, in that the echo bit is cleared when curses initializes the terminal state. BSD curses

differed from this slightly; it left the echo bit on at initialization, but the BSD raw call turned it off as a

side-effect. For best portability, set echo or noecho explicitly just after initialization, even if your

program remains in cooked mode.

The XSI Curses standard is ambiguous on the question of whether raw should disable the CRLF

translations controlled by nl and nonl. BSD curses did turn off these translations; AT&T curses (at

least as late as SVr1) did not. We chose to do so, on the theory that a programmer requesting raw input

wants a clean (ideally 8-bit clean) connection that the operating system will not alter.

When keypad is first enabled, ncurses loads the key-definitions for the current terminal description. If

the terminal description includes extended string capabilities, e.g., from using the -x option of tic, then

ncurses also defines keys for the capabilities whose names begin with "k". The corresponding

keycodes are generated and (depending on previous loads of terminal descriptions) may differ from one

curs_inopts(3X) curs_inopts(3X)

curs_inopts(3X)



execution of a program to the next. The generated keycodes are recognized by the keyname function

(which will then return a name beginning with "k" denoting the terminfo capability name rather than

"K", used for curses key-names). On the other hand, an application can use define_key to establish a

specific keycode for a given string. This makes it possible for an application to check for an extended

capability’s presence with tigetstr, and reassign the keycode to match its own needs.

Low-level applications can use tigetstr to obtain the definition of any particular string capability.

Higher-level applications which use the curses wgetch and similar functions to return keycodes rely

upon the order in which the strings are loaded. If more than one key definition has the same string

value, then wgetch can return only one keycode. Most curses implementations (including ncurses) load

key definitions in the order defined by the array of string capability names. The last key to be loaded

determines the keycode which will be returned. In ncurses, you may also have extended capabilities

interpreted as key definitions. These are loaded after the predefined keys, and if a capability’s value is

the same as a previously-loaded key definition, the later definition is the one used.

NOTES
Note that echo, noecho, halfdelay, intrflush, meta, nl, nonl, nodelay, notimeout, noqiflush, qiflush,

timeout, and wtimeout may be macros.

The noraw and nocbreak calls follow historical practice in that they attempt to restore to normal

("cooked") mode from raw and cbreak modes respectively. Mixing raw/noraw and cbreak/nocbreak

calls leads to tty driver control states that are hard to predict or understand; it is not recommended.

SEE ALSO
curses(3X), curs_getch(3X), curs_initscr(3X), curs_util(3X), define_key(3X), termios(3)

curs_inopts(3X) curs_inopts(3X)

curs_inopts(3X)


