
NAME
UMA - general-purpose kernel object allocator

SYNOPSIS
#include <sys/param.h>
#include <sys/queue.h>
#include <vm/uma.h>

typedef int (*uma_ctor)(void *mem, int size, void *arg, int flags);

typedef void (*uma_dtor)(void *mem, int size, void *arg);

typedef int (*uma_init)(void *mem, int size, int flags);

typedef void (*uma_fini)(void *mem, int size);

typedef int (*uma_import)(void *arg, void **store, int count, int domain,

int flags);

typedef void (*uma_release)(void *arg, void **store, int count);

typedef void *(*uma_alloc)(uma_zone_t zone, vm_size_t size, int domain,

uint8_t *pflag, int wait);

typedef void (*uma_free)(void *item, vm_size_t size, uint8_t pflag);

uma_zone_t

uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, uma_init zinit, uma_fini zfini,

int align, uint16_t flags);

uma_zone_t

uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, uma_init zinit, uma_fini zfini,

uma_import zimport, uma_release zrelease, void *arg, int flags);

uma_zone_t

uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, uma_init zinit, uma_fini zfini,

uma_zone_t master);

void

uma_zdestroy(uma_zone_t zone);

void *

uma_zalloc(uma_zone_t zone, int flags);

void *

uma_zalloc_arg(uma_zone_t zone, void *arg, int flags);

UMA(9) FreeBSD Kernel Developer’s Manual UMA(9)

FreeBSD 14.2-RELEASE January 16, 2023 FreeBSD 14.2-RELEASE

void *

uma_zalloc_domain(uma_zone_t zone, void *arg, int domain, int flags);

void *

uma_zalloc_pcpu(uma_zone_t zone, int flags);

void *

uma_zalloc_pcpu_arg(uma_zone_t zone, void *arg, int flags);

void *

uma_zalloc_smr(uma_zone_t zone, int flags);

void

uma_zfree(uma_zone_t zone, void *item);

void

uma_zfree_arg(uma_zone_t zone, void *item, void *arg);

void

uma_zfree_pcpu(uma_zone_t zone, void *item);

void

uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *arg);

void

uma_zfree_smr(uma_zone_t zone, void *item);

void

uma_prealloc(uma_zone_t zone, int nitems);

void

uma_zone_reserve(uma_zone_t zone, int nitems);

void

uma_zone_reserve_kva(uma_zone_t zone, int nitems);

void

uma_reclaim(int req);

void

UMA(9) FreeBSD Kernel Developer’s Manual UMA(9)

FreeBSD 14.2-RELEASE January 16, 2023 FreeBSD 14.2-RELEASE

uma_reclaim_domain(int req, int domain);

void

uma_zone_reclaim(uma_zone_t zone, int req);

void

uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain);

void

uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf);

void

uma_zone_set_freef(uma_zone_t zone, uma_free freef);

int

uma_zone_set_max(uma_zone_t zone, int nitems);

void

uma_zone_set_maxcache(uma_zone_t zone, int nitems);

int

uma_zone_get_max(uma_zone_t zone);

int

uma_zone_get_cur(uma_zone_t zone);

void

uma_zone_set_warning(uma_zone_t zone, const char *warning);

void

uma_zone_set_maxaction(uma_zone_t zone, void (*maxaction)(uma_zone_t));

smr_t

uma_zone_get_smr(uma_zone_t zone);

void

uma_zone_set_smr(uma_zone_t zone, smr_t smr);

#include <sys/sysctl.h>

UMA(9) FreeBSD Kernel Developer’s Manual UMA(9)

FreeBSD 14.2-RELEASE January 16, 2023 FreeBSD 14.2-RELEASE

SYSCTL_UMA_MAX(parent, nbr, name, access, zone, descr);

SYSCTL_ADD_UMA_MAX(ctx, parent, nbr, name, access, zone, descr);

SYSCTL_UMA_CUR(parent, nbr, name, access, zone, descr);

SYSCTL_ADD_UMA_CUR(ctx, parent, nbr, name, access, zone, descr);

DESCRIPTION
UMA (Universal Memory Allocator) provides an efficient interface for managing dynamically-sized

collections of items of identical size, referred to as zones. Zones keep track of which items are in use

and which are not, and UMA provides functions for allocating items from a zone and for releasing them

back, making them available for subsequent allocation requests. Zones maintain per-CPU caches with

linear scalability on SMP systems as well as round-robin and first-touch policies for NUMA systems.

The number of items cached per CPU is bounded, and each zone additionally maintains an unbounded

cache of items that is used to quickly satisfy per-CPU cache allocation misses.

Two types of zones exist: regular zones and cache zones. In a regular zone, items are allocated from a

slab, which is one or more virtually contiguous memory pages that have been allocated from the kernel’s

page allocator. Internally, slabs are managed by a UMA keg, which is responsible for allocating slabs

and keeping track of their usage by one or more zones. In typical usage, there is one keg per zone, so

slabs are not shared among multiple zones.

Normal zones import items from a keg, and release items back to that keg if requested. Cache zones do

not have a keg, and instead use custom import and release methods. For example, some collections of

kernel objects are statically allocated at boot-time, and the size of the collection does not change. A

cache zone can be used to implement an efficient allocator for the objects in such a collection.

The uma_zcreate() and uma_zcache_create() functions create a new regular zone and cache zone,

respectively. The uma_zsecond_create() function creates a regular zone which shares the keg of the

zone specified by the master argument. The name argument is a text name of the zone for debugging

and stats; this memory should not be freed until the zone has been deallocated.

The ctor and dtor arguments are callback functions that are called by the UMA subsystem at the time of

the call to uma_zalloc() and uma_zfree() respectively. Their purpose is to provide hooks for initializing

or destroying things that need to be done at the time of the allocation or release of a resource. A good

usage for the ctor and dtor callbacks might be to initialize a data structure embedded in the item, such as

a queue(3) head.

The zinit and zfini arguments are used to optimize the allocation of items from the zone. They are called

UMA(9) FreeBSD Kernel Developer’s Manual UMA(9)

FreeBSD 14.2-RELEASE January 16, 2023 FreeBSD 14.2-RELEASE

by the UMA subsystem whenever it needs to allocate or free items to satisfy requests or memory

pressure. A good use for the zinit and zfini callbacks might be to initialize and destroy a mutex

contained within an item. This would allow one to avoid destroying and re-initializing the mutex each

time the item is freed and re-allocated. They are not called on each call to uma_zalloc() and uma_zfree()

but rather when an item is imported into a zone’s cache, and when a zone releases an item to the slab

allocator, typically as a response to memory pressure.

For uma_zcache_create(), the zimport and zrelease functions are called to import items into the zone and

to release items from the zone, respectively. The zimport function should store pointers to items in the

store array, which contains a maximum of count entries. The function must return the number of

imported items, which may be less than the maximum. Similarly, the store parameter to the zrelease

function contains an array of count pointers to items. The arg parameter passed to uma_zcache_create()

is provided to the import and release functions. The domain parameter to zimport specifies the

requested numa(4) domain for the allocation. It is either a NUMA domain number or the special value

UMA_ANYDOMAIN.

The flags argument of uma_zcreate() and uma_zcache_create() is a subset of the following flags:

UMA_ZONE_NOFREE

Slabs allocated to the zone’s keg are never freed.

UMA_ZONE_NODUMP

Pages belonging to the zone will not be included in minidumps.

UMA_ZONE_PCPU

An allocation from zone would have mp_ncpu shadow copies, that are privately assigned to CPUs.

A CPU can address its private copy using base the allocation address plus a multiple of the current

CPU ID and sizeof(struct pcpu):

foo_zone = uma_zcreate(..., UMA_ZONE_PCPU);

...

foo_base = uma_zalloc(foo_zone, ...);

...

critical_enter();

foo_pcpu = (foo_t *)zpcpu_get(foo_base);

/* do something with foo_pcpu */

critical_exit();

Note that M_ZERO cannot be used when allocating items from a PCPU zone. To obtain zeroed

memory from a PCPU zone, use the uma_zalloc_pcpu() function and its variants instead, and pass

UMA(9) FreeBSD Kernel Developer’s Manual UMA(9)

FreeBSD 14.2-RELEASE January 16, 2023 FreeBSD 14.2-RELEASE

M_ZERO.

UMA_ZONE_NOTOUCH

The UMA subsystem may not directly touch (i.e. read or write) the slab memory. Otherwise, by

default, book-keeping of items within a slab may be done in the slab page itself, and INVARIANTS

kernels may also do use-after-free checking by accessing the slab memory.

UMA_ZONE_ZINIT

The zone will have its uma_init method set to internal method that initializes a new allocated slab to

all zeros. Do not mistake uma_init method with uma_ctor. A zone with UMA_ZONE_ZINIT flag

would not return zeroed memory on every uma_zalloc().

UMA_ZONE_NOTPAGE

An allocator function will be supplied with uma_zone_set_allocf() and the memory that it returns

may not be kernel virtual memory backed by VM pages in the page array.

UMA_ZONE_MALLOC

The zone is for the malloc(9) subsystem.

UMA_ZONE_VM

The zone is for the VM subsystem.

UMA_ZONE_CONTIG

Items in this zone must be contiguous in physical address space. Items will follow normal

alignment constraints and may span page boundaries between pages with contiguous physical

addresses.

UMA_ZONE_UNMANAGED

By default, UMA zone caches are shrunk to help resolve free page shortages. Cached items that

have not been used for a long period may also be freed from zone. When this flag is set, the system

will not reclaim memory from the zone’s caches.

UMA_ZONE_SMR

Create a zone whose items will be synchronized using the smr(9) mechanism. Upon creation the

zone will have an associated structure which can be fetched using uma_zone_get_smr().

Zones can be destroyed using uma_zdestroy(), freeing all memory that is cached in the zone. All items

allocated from the zone must be freed to the zone before the zone may be safely destroyed.

To allocate an item from a zone, simply call uma_zalloc() with a pointer to that zone and set the flags

UMA(9) FreeBSD Kernel Developer’s Manual UMA(9)

FreeBSD 14.2-RELEASE January 16, 2023 FreeBSD 14.2-RELEASE

argument to selected flags as documented in malloc(9). It will return a pointer to an item if successful,

or NULL in the rare case where all items in the zone are in use and the allocator is unable to grow the

zone and M_NOWAIT is specified.

Items are released back to the zone from which they were allocated by calling uma_zfree() with a

pointer to the zone and a pointer to the item. If item is NULL, then uma_zfree() does nothing.

The variants uma_zalloc_arg() and uma_zfree_arg() allow callers to specify an argument for the ctor and

dtor functions of the zone, respectively. The variants uma_zalloc_pcpu() and uma_zfree_pcpu() allocate

and free mp_ncpu shadow copies as described for UMA_ZONE_PCPU. If item is NULL, then

uma_zfree_pcpu() does nothing.

The uma_zalloc_smr() and uma_zfree_smr() functions allocate and free items from an SMR-enabled

zone, that is, a zone created with UMA_ZONE_SMR or a zone that has had uma_zone_set_smr() called.

The uma_zalloc_domain() function allows callers to specify a fixed numa(4) domain to allocate from.

This uses a guaranteed but slow path in the allocator which reduces concurrency.

The uma_prealloc() function allocates slabs for the requested number of items, typically following the

initial creation of a zone. Subsequent allocations from the zone will be satisfied using the pre-allocated

slabs. Note that slab allocation is performed with the M_WAITOK flag, so uma_prealloc() may sleep.

The uma_zone_reserve() function sets the number of reserved items for the zone. uma_zalloc() and

variants will ensure that the zone contains at least the reserved number of free items. Reserved items

may be allocated by specifying M_USE_RESERVE in the allocation request flags. uma_zone_reserve()

does not perform any pre-allocation by itself.

The uma_zone_reserve_kva() function pre-allocates kernel virtual address space for the requested

number of items. Subsequent allocations from the zone will be satisfied using the pre-allocated address

space. Note that unlike uma_zone_reserve(), uma_zone_reserve_kva() does not restrict the use of the

pre-allocation to M_USE_RESERVE requests.

The uma_reclaim() and uma_zone_reclaim() functions reclaim cached items from UMA zones, releasing

unused memory. The uma_reclaim() function reclaims items from all regular zones, while

uma_zone_reclaim() reclaims items only from the specified zone. The req parameter must be one of

three values which specify how aggressively items are to be reclaimed:

UMA_RECLAIM_TRIM

Reclaim items only in excess of the zone’s estimated working set size. The working set size is

periodically updated and tracks the recent history of the zone’s usage.

UMA(9) FreeBSD Kernel Developer’s Manual UMA(9)

FreeBSD 14.2-RELEASE January 16, 2023 FreeBSD 14.2-RELEASE

UMA_RECLAIM_DRAIN

Reclaim all items from the unbounded cache. Free items in the per-CPU caches are left alone.

UMA_RECLAIM_DRAIN_CPU

Reclaim all cached items.

The uma_reclaim_domain() and uma_zone_reclaim_domain() functions apply only to items allocated

from the specified domain. In the case of domains using a round-robin NUMA policy, cached items

from all domains are freed to the keg, but only slabs from the specific domain will be freed.

The uma_zone_set_allocf() and uma_zone_set_freef() functions allow a zone’s default slab allocation

and free functions to be overridden. This is useful if memory with special constraints such as attributes,

alignment, or address ranges must be used.

The uma_zone_set_max() function limits the number of items (and therefore memory) that can be

allocated to zone. The nitems argument specifies the requested upper limit number of items. The

effective limit is returned to the caller, as it may end up being higher than requested due to the

implementation rounding up to ensure all memory pages allocated to the zone are utilised to capacity.

The limit applies to the total number of items in the zone, which includes allocated items, free items and

free items in the per-cpu caches. On systems with more than one CPU it may not be possible to allocate

the specified number of items even when there is no shortage of memory, because all of the remaining

free items may be in the caches of the other CPUs when the limit is hit.

The uma_zone_set_maxcache() function limits the number of free items which may be cached in the

zone. This limit applies to both the per-CPU caches and the cache of free buckets.

The uma_zone_get_max() function returns the effective upper limit number of items for a zone.

The uma_zone_get_cur() function returns an approximation of the number of items currently allocated

from the zone. The returned value is approximate because appropriate synchronisation to determine an

exact value is not performed by the implementation. This ensures low overhead at the expense of

potentially stale data being used in the calculation.

The uma_zone_set_warning() function sets a warning that will be printed on the system console when

the given zone becomes full and fails to allocate an item. The warning will be printed no more often

than every five minutes. Warnings can be turned off globally by setting the vm.zone_warnings sysctl

tunable to 0.

The uma_zone_set_maxaction() function sets a function that will be called when the given zone

becomes full and fails to allocate an item. The function will be called with the zone locked. Also, the

function that called the allocation function may have held additional locks. Therefore, this function

UMA(9) FreeBSD Kernel Developer’s Manual UMA(9)

FreeBSD 14.2-RELEASE January 16, 2023 FreeBSD 14.2-RELEASE

should do very little work (similar to a signal handler).

The uma_zone_set_smr() function associates an existing smr(9) structure with a UMA zone. The effect

is similar to creating a zone with the UMA_ZONE_SMR flag, except that a new SMR structure is not

created. This function must be called before any allocations from the zone are performed.

The SYSCTL_UMA_MAX(parent, nbr, name, access, zone, descr) macro declares a static sysctl(9) oid

that exports the effective upper limit number of items for a zone. The zone argument should be a pointer

to uma_zone_t. A read of the oid returns value obtained through uma_zone_get_max(). A write to the

oid sets new value via uma_zone_set_max(). The SYSCTL_ADD_UMA_MAX(ctx, parent, nbr, name,

access, zone, descr) macro is provided to create this type of oid dynamically.

The SYSCTL_UMA_CUR(parent, nbr, name, access, zone, descr) macro declares a static read-only

sysctl(9) oid that exports the approximate current occupancy of the zone. The zone argument should be

a pointer to uma_zone_t. A read of the oid returns value obtained through uma_zone_get_cur(). The

SYSCTL_ADD_UMA_CUR(ctx, parent, nbr, name, zone, descr) macro is provided to create this type

of oid dynamically.

IMPLEMENTATION NOTES
The memory that these allocation calls return is not executable. The uma_zalloc() function does not

support the M_EXEC flag to allocate executable memory. Not all platforms enforce a distinction

between executable and non-executable memory.

SEE ALSO
numa(4), vmstat(8), malloc(9), smr(9)

Jeff Bonwick, The Slab Allocator: An Object-Caching Kernel Memory Allocator, 1994.

HISTORY
The zone allocator first appeared in FreeBSD 3.0. It was radically changed in FreeBSD 5.0 to function

as a slab allocator.

AUTHORS
The zone allocator was written by John S. Dyson. The zone allocator was rewritten in large parts by Jeff

Roberson <jeff@FreeBSD.org> to function as a slab allocator.

This manual page was written by Dag-Erling Sm/orgrav <des@FreeBSD.org>. Changes for UMA by

Jeroen Ruigrok van der Werven <asmodai@FreeBSD.org>.

UMA(9) FreeBSD Kernel Developer’s Manual UMA(9)

FreeBSD 14.2-RELEASE January 16, 2023 FreeBSD 14.2-RELEASE

