
NAME
getch, wgetch, mvgetch, mvwgetch, ungetch, has_key - get (or push back) characters from curses

terminal keyboard

SYNOPSIS
#include <curses.h>

int getch(void);
int wgetch(WINDOW *win);
int mvgetch(int y, int x);
int mvwgetch(WINDOW *win, int y, int x);

int ungetch(int c);

/* extension */

int has_key(int c);

DESCRIPTION
Reading Characters

wgetch gathers a key stroke from the terminal keyboard associated with a curses window win.

ncurses(3X) describes the variants of this function.

When input is pending, wgetch returns an integer identifying the key stroke; for alphanumeric and

punctuation keys, this value corresponds to the character encoding used by the terminal. Use of the

control key as a modifier often results in a distinct code. The behavior of other keys depends on

whether win is in keypad mode; see subsection "Keypad Mode" below.

If no input is pending, then if the no-delay flag is set in the window (see nodelay(3X)), the function

returns ERR; otherwise, curses waits until the terminal has input. If cbreak(3X) has been called, this

happens after one character is read. If nocbreak(3X) has been called, it occurs when the next newline is

read. If halfdelay(3X) has been called, curses waits until a character is typed or the specified delay

elapses.

If echo(3X) has been called, and the window is not a pad, curses writes the returned character c to the

window (at the cursor position) per the following rules.

+o If c matches the terminal’s erase character, the cursor moves leftward one position and the new

position is erased as if wmove(3X) and then wdelch(3X) were called. When the window’s keypad

mode is enabled (see below), KEY_LEFT and KEY_BACKSPACE are handled the same way.

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

+o curses writes any other c to the window, as with wechochar(3X).

+o If the window has been moved or modified since the last call to wrefresh(3X), curses calls

wrefresh.

If c is a carriage return and nl(3X) has been called, wgetch returns the character code for line feed

instead.

Keypad Mode
To curses, key strokes not from the alphabetic section of the keyboard (those corresponding to the

ECMA-6 character set--see ascii(7)--optionally modified by either the control or shift keys) are treated

as function keys. (In curses, the term "function key" includes but is not limited to keycaps engraved

with "F1", "PF1", and so on.) If the window is in keypad mode, these produce a numeric code

corresponding to the KEY_ symbols listed in subsection "Predefined Key Codes" below; otherwise,

they transmit a sequence of codes typically starting with the escape character, and which must be

collected with multiple wgetch calls.

+o The curses.h header file declares many predefined function keys whose names begin with KEY_;

these object-like macros have values outside the range of eight-bit character codes.

+o In ncurses, user-defined function keys are configured with define_key(3X); they have no names,

but are also expected to have values outside the range of eight-bit codes.

A variable intended to hold a function key code must thus be of type short or larger.

Most terminals one encounters follow the ECMA-48 standard insofar as their function keys produce

character sequences prefixed with the escape character ESC. This fact implies that curses cannot know

whether the terminal has sent an ESC key stroke or the beginning of a function key’s character

sequence without waiting to see if, and how soon, further input arrives. When curses reads such an

ambiguous character, it sets a timer. If the remainder of the sequence does not arrive within the

designated time, wgetch returns the prefix character; otherwise, it returns the function key code

corresponding to the unique sequence defined by the terminal. Consequently, a user of a curses

application may experience a delay after pressing ESC while curses disambiguates the input; see

section "EXTENSIONS" below. If the window is in "no time-out" mode, the timer does not expire; it

is an infinite (or very large) value. See notimeout(3X). Because function key sequences usually begin

with an escape character, the terminal may appear to hang in no time-out mode after the user has

pressed ESC. Generally, further typing "awakens" curses.

Ungetting Characters
ungetch places c into the input queue to be returned by the next call to wgetch. A single input queue

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

serves all windows.

Predefined Key Codes
The header file curses.h defines the following function key codes.

+o Except for the special case of KEY_RESIZE, a window’s keypad mode must be enabled for

wgetch to read these codes from it.

+o Not all of these are necessarily supported on any particular terminal.

+o The naming convention may seem obscure, with some apparent misspellings (such as "RSUME"

for "resume"); the names correspond to the terminfo capability names for the keys, and were

standardized before the IBM PC/AT keyboard layout achieved a dominant position in industry.

Symbol Key
name

===

KEY_BREAK Break

key

KEY_DOWN Arrow

keys

KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME Home key (upward+left

arrow)

KEY_BACKSPACEBackspace

KEY_F0 Function keys; space for 64 keys is

reserved

KEY_F(n) Function key n where 0 <= n <=

63

KEY_DL Delete

line

KEY_IL Insert

line

KEY_DC Delete

character

KEY_IC Insert character/Enter insert

mode

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

KEY_EIC Exit insert character

mode

KEY_CLEAR Clear

screen

KEY_EOS Clear to end of

screen

KEY_EOL Clear to end of

line

KEY_SF Scroll one line

forward

KEY_SR Scroll one line backward

(reverse)

KEY_NPAGE Next page/Page

up

KEY_PPAGE Previous page/Page

down

KEY_STAB Set

tab

KEY_CTAB Clear

tab

KEY_CATAB Clear all

tabs

KEY_ENTER Enter/Send

KEY_SRESET Soft (partial)

reset

KEY_RESET (Hard)

reset

KEY_PRINT Print/Copy

KEY_LL Home down/Bottom (lower

left)

KEY_A1 Upper left of

keypad

KEY_A3 Upper right of

keypad

KEY_B2 Center of

keypad

KEY_C1 Lower left of

keypad

KEY_C3 Lower right of

keypad

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

KEY_BTAB Back tab

key

KEY_BEG Beg(inning)

key

KEY_CANCEL Cancel

key

KEY_CLOSE Close

key

KEY_COMMAND Cmd (command)

key

KEY_COPY Copy

key

KEY_CREATE Create

key

KEY_END End

key

KEY_EXIT Exit

key

KEY_FIND Find

key

KEY_HELP Help

key

KEY_MARK Mark

key

KEY_MESSAGE Message

key

KEY_MOUSE Mouse event

occurred

KEY_MOVE Move

key

KEY_NEXT Next object

key

KEY_OPEN Open

key

KEY_OPTIONS Options

key

KEY_PREVIOUS Previous object

key

KEY_REDO Redo

key

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

KEY_REFERENCE Ref(erence)

key

KEY_REFRESH Refresh

key

KEY_REPLACE Replace

key

KEY_RESIZE Screen

resized

KEY_RESTART Restart

key

KEY_RESUME Resume

key

KEY_SAVE Save

key

KEY_SELECT Select

key

KEY_SUSPEND Suspend

key

KEY_UNDO Undo

key

KEY_SBEG Shifted beginning

key

KEY_SCANCEL Shifted cancel

key

KEY_SCOMMANDShifted command

key

KEY_SCOPY Shifted copy

key

KEY_SCREATE Shifted create

key

KEY_SDC Shifted delete character

key

KEY_SDL Shifted delete line

key

KEY_SEND Shifted end

key

KEY_SEOL Shifted clear line

key

KEY_SEXIT Shifted exit

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

key

KEY_SFIND Shifted find

key

KEY_SHELP Shifted help

key

KEY_SHOME Shifted home

key

KEY_SIC Shifted insert

key

KEY_SLEFT Shifted left arrow

key

KEY_SMESSAGE Shifted message

key

KEY_SMOVE Shifted move

key

KEY_SNEXT Shifted next object

key

KEY_SOPTIONS Shifted options

key

KEY_SPREVIOUS Shifted previous object

key

KEY_SPRINT Shifted print

key

KEY_SREDO Shifted redo

key

KEY_SREPLACE Shifted replace

key

KEY_SRIGHT Shifted right arrow

key

KEY_SRSUME Shifted resume

key

KEY_SSAVE Shifted save

key

KEY_SSUSPEND Shifted suspend

key

KEY_SUNDO Shifted undo

key

Many keyboards feature a nine-key directional pad.

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

+-----+--------+-------+

| A1| up| A3 |

+-----+--------+-------+

|left| B2|right |

+-----+--------+-------+

| C1|down| C3 |

+-----+--------+-------+

Two of the symbols in the list above do not correspond to a physical key.

+o wgetch returns KEY_RESIZE, even if the window’s keypad mode is disabled, when ncurses

handles a SIGWINCH signal; see initscr(3X) and resizeterm(3X).

+o wgetch returns KEY_MOUSE to indicate that a mouse event is pending collection; see

curs_mouse(3X). Receipt of this code requires a window’s keypad mode to be enabled, because

to interpret mouse input (as with with xterm(1)’s mouse prototocol), ncurses must read an escape

sequence, as with a function key.

Testing Key Codes
In ncurses, has_key returns a Boolean value indicating whether the terminal type recognizes its

parameter as a key code value. See also define_key(3X) and key_defined(3X).

RETURN VALUE
Except for has_key, these functions return OK on success and ERR on failure.

Functions taking a WINDOW pointer argument fail if the pointer is NULL.

Functions prefixed with "mv" first perform cursor movement and fail if the position (y, x) is outside the

window boundaries.

wgetch also fails if

+o its timeout expires without any data arriving, or

+o execution was interrupted by a signal, in which case errno is set to EINTR.

ungetch fails if there is no more room in the input queue.

has_key returns TRUE or FALSE.

NOTES

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

curses discourages assignment of the ESC key to a discrete function by the programmer because the

library requires a delay while it awaits the potential remainder of a terminal escape sequence.

Some key strokes are indistinguishable from control characters; for example, KEY_ENTER may be the

same as ^M, and KEY_BACKSPACE may be the same as ^H or ^?. Consult the terminal’s terminfo

entry to determine whether this is the case; see infocmp(1). Some curses implementations, including

ncurses, honor the terminfo key definitions; others treat such control characters specially.

curses distinguishes the Enter keys in the alphabetic and numeric keypad sections of a keyboard

because (most) terminals do. KEY_ENTER refers to the key on the numeric keypad and, like other

function keys, and is reliably recognized only if the window’s keypad mode is enabled.

+o The terminfo key_enter (kent) capability describes the character (sequence) sent by the Enter key

of a terminal’s numeric (or similar) keypad.

+o "Enter or send" is X/Open Curses’s description of this key.

curses treats the Enter or Return key in the alphabetic section of the keyboard differently.

+o It usually produces a control code for carriage return (^M) or line feed (^J).

+o Depending on the terminal mode (raw, cbreak, or "cooked"), and whether nl(3X) or nonl(3X) has

been called, wgetch may return either a carriage return or line feed upon an Enter or Return key

stroke.

Use of wgetch with echo(3X) and neither cbreak(3X) nor raw(3X) is not well-defined.

Historically, the list of key code macros above was influenced by the function-key-rich keyboard of the

AT&T 7300 (also known variously as the "3B1", "Safari 4", and "UNIX PC"), a 1985 machine.

Today’s computer keyboards are based that of the IBM PC/AT and tend to have fewer. A curses

application can expect such a keyboard to transmit key codes KEY_UP, KEY_DOWN, KEY_LEFT,

KEY_RIGHT, KEY_HOME, KEY_END, KEY_PPAGE (Page Up), KEY_NPAGE (Page Down),

KEY_IC (Insert), KEY_DC (Delete), and KEY_F(n) for 1 <= n <= 12.

getch, mvgetch, and mvwgetch may be implemented as macros.

EXTENSIONS
In ncurses, when a window’s "no time-out" mode is not set, the ESCDELAY variable configures the

duration of the timer used to disambiguate a function key character sequence from a series of key

strokes beginning with ESC typed by the user; see curs_variables(3X).

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

has_key was designed for ncurses(3X), and is not found in SVr4 curses, 4.4BSD curses, or any other

previous curses implementation.

PORTABILITY
Applications employing ncurses extensions should condition their use on the visibility of the

NCURSES_VERSION preprocessor macro.

X/Open Curses, Issue 4 describes getch, wgetch, mvgetch, mvwgetch, and ungetch. It specifies no

error conditions for them.

wgetch reads only single-byte characters.

The echo behavior of these functions on input of KEY_ or backspace characters was not specified in

the SVr4 documentation. This description is adapted from X/Open Curses.

The behavior of wgetch in the presence of signal handlers is unspecified in the SVr4 documentation

and X/Open Curses. In historical curses implementations, it varied depending on whether the operating

system’s dispatch of a signal to a handler interrupting a read(2) call in progress, and also (in some

implementations) whether an input timeout or non-blocking mode has been set. Programmers

concerned about portability should be prepared for either of two cases: (a) signal receipt does not

interrupt wgetch; or (b) signal receipt interrupts wgetch and causes it to return ERR with errno set to

EINTR.

KEY_MOUSE is mentioned in X/Open Curses, along with a few related terminfo capabilities, but no

higher-level functions use the feature. The implementation in ncurses is an extension.

KEY_RESIZE and has_key are extensions first implemented for ncurses. By 2022, PDCurses and

NetBSD curses had added them along with KEY_MOUSE.

SEE ALSO
curs_get_wch(3X) describes comparable functions of the ncurses library in its wide-character

configuration (ncursesw).

curses(3X), curs_addch(3X), curs_inopts(3X), curs_mouse(3X), curs_move(3X), curs_outopts(3X),

curs_refresh(3X), curs_variables(3X), resizeterm(3X), ascii(7)

ECMA-6 "7-bit coded Character Set" <https://ecma-international.org/publications-and-standards/

standards/ecma-6/>

ECMA-48 "Control Functions for Coded Character Sets" <https://ecma-international.org/

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

publications-and-standards/standards/ecma-48/>

curs_getch(3X) Library calls curs_getch(3X)

ncurses 6.5 2024-04-20 curs_getch(3X)

