
NAME
unifdef, unifdefall - remove preprocessor conditionals from code

SYNOPSIS
unifdef [-bBcdehKkmnsStV] [-Ipath] [-[i]Dsym[=val]] [-[i]Usym] ... [-f defile] [-x {012}] [-M backext]

[-o outfile] [infile ...]

unifdefall [-Ipath] ... file

DESCRIPTION
The unifdef utility selectively processes conditional cpp(1) directives. It removes from a file both the

directives and any additional text that they specify should be removed, while otherwise leaving the file

alone.

The unifdef utility acts on #if, #ifdef, #ifndef, #elif, #else, and #endif lines, using macros specified in -D
and -U command line options or in -f definitions files. A directive is processed if the macro

specifications are sufficient to provide a definite value for its control expression. If the result is false,

the directive and the following lines under its control are removed. If the result is true, only the directive

is removed. An #ifdef or #ifndef directive is passed through unchanged if its controlling macro is not

specified. Any #if or #elif control expression that has an unknown value or that unifdef cannot parse is

passed through unchanged. By default, unifdef ignores #if and #elif lines with constant expressions; it

can be told to process them by specifying the -k flag on the command line.

It understands a commonly-used subset of the expression syntax for #if and #elif lines: integer constants,

integer values of macros defined on the command line, the defined() operator, the operators !, ~, -
(unary), *, /, %, +, -, <, <=, >, >=, ==, !=, &, ^, |, &&, ||, and parenthesized expressions. Division by

zero is treated as an unknown value. A kind of "short circuit" evaluation is used for the && operator: if

either operand is definitely false then the result is false, even if the value of the other operand is

unknown. Similarly, if either operand of || is definitely true then the result is true.

When evaluating an expression, unifdef does not expand macros first. The value of a macro must be a

simple number, not an expression. A limited form of indirection is allowed, where one macro’s value is

the name of another.

In most cases, unifdef does not distinguish between object-like macros (without arguments) and

function-like macros (with arguments). A function-like macro invocation can appear in #if and #elif
control expressions. If the macro is not explicitly defined, or is defined with the -D flag on the

command-line, or with #define in a -f definitions file, its arguments are ignored. If a macro is explicitly

undefined on the command line with the -U flag, or with #undef in a -f definitions file, it may not have

any arguments since this leads to a syntax error.

UNIFDEF(1) FreeBSD General Commands Manual (prm) UNIFDEF(1)

FreeBSD 14.2-RELEASE December 3, 2015 FreeBSD 14.2-RELEASE

The unifdef utility understands just enough about C to know when one of the directives is inactive

because it is inside a comment, or cannot be evaluated because it is split by a backslash-continued line.

It spots unusually-formatted preprocessor directives and passes them through unchanged when the

layout is too odd for it to handle. (See the BUGS section below.)

A script called unifdefall can be used to remove all conditional cpp(1) directives from a file. It uses

unifdef -s and cpp -dM to get lists of all the controlling macros and their definitions (or lack thereof),

then invokes unifdef with appropriate arguments to process the file.

OPTIONS
-Dsym=val

Specify that a macro is defined to a given value.

-Dsym

Specify that a macro is defined to the value 1.

-Usym

Specify that a macro is undefined.

If the same macro appears in more than one argument, the last occurrence dominates.

-iDsym[=val]

-iUsym

C strings, comments, and line continuations are ignored within #ifdef and #ifndef blocks

controlled by macros specified with these options.

-f defile

The file defile contains #define and #undef preprocessor directives, which have the same effect

as the corresponding -D and -U command-line arguments. You can have multiple -f arguments

and mix them with -D and -U arguments; later options override earlier ones.

Each directive must be on a single line. Object-like macro definitions (without arguments) are

set to the given value. Function-like macro definitions (with arguments) are treated as if they are

set to 1.

Warning: string literals and character constants are not parsed correctly in -f files.

-b Replace removed lines with blank lines instead of deleting them. Mutually exclusive with the -B
option.

UNIFDEF(1) FreeBSD General Commands Manual (prm) UNIFDEF(1)

FreeBSD 14.2-RELEASE December 3, 2015 FreeBSD 14.2-RELEASE

-B Compress blank lines around a deleted section. Mutually exclusive with the -b option.

-c Complement, i.e., lines that would have been removed or blanked are retained and vice versa.

-d Turn on printing of debugging messages.

-e By default, unifdef will report an error if it needs to remove a preprocessor directive that spans

more than one line, for example, if it has a multi-line comment hanging off its right hand end.

The -e flag makes it ignore the line instead.

-h Print help.

-Ipath Specifies to unifdefall an additional place to look for #include files. This option is ignored by

unifdef for compatibility with cpp(1) and to simplify the implementation of unifdefall.

-K Always treat the result of && and || operators as unknown if either operand is unknown, instead

of short-circuiting when unknown operands can’t affect the result. This option is for

compatibility with older versions of unifdef.

-k Process #if and #elif lines with constant expressions. By default, sections controlled by such

lines are passed through unchanged because they typically start "#if 0" and are used as a kind of

comment to sketch out future or past development. It would be rude to strip them out, just as it

would be for normal comments.

-m Modify one or more input files in place. If an input file is not modified, the original is preserved

instead of being overwritten with an identical copy.

-M backext

Modify input files in place, and keep backups of the original files by appending the backext to

the input filenames. A zero length backext behaves the same as the -m option.

-n Add #line directives to the output following any deleted lines, so that errors produced when

compiling the output file correspond to line numbers in the input file.

-o outfile

Write output to the file outfile instead of the standard output when processing a single file.

-s Instead of processing an input file as usual, this option causes unifdef to produce a list of macros

that are used in preprocessor directive controlling expressions.

UNIFDEF(1) FreeBSD General Commands Manual (prm) UNIFDEF(1)

FreeBSD 14.2-RELEASE December 3, 2015 FreeBSD 14.2-RELEASE

-S Like the -s option, but the nesting depth of each macro is also printed. This is useful for working

out the number of possible combinations of interdependent defined/undefined macros.

-t Disables parsing for C strings, comments, and line continuations, which is useful for plain text.

This is a blanket version of the -iD and -iU flags.

-V Print version details.

-x {012}

Set exit status mode to zero, one, or two. See the EXIT STATUS section below for details.

The unifdef utility takes its input from stdin if there are no file arguments. You must use the -m or -M
options if there are multiple input files. You can specify input from stdin or output to stdout with ‘-’.

The unifdef utility works nicely with the -Dsym option of diff(1).

EXIT STATUS
In normal usage the unifdef utility’s exit status depends on the mode set using the -x option.

If the exit mode is zero (the default) then unifdef exits with status 0 if the output is an exact copy of the

input, or with status 1 if the output differs.

If the exit mode is one, unifdef exits with status 1 if the output is unmodified or 0 if it differs.

If the exit mode is two, unifdef exits with status zero in both cases.

In all exit modes, unifdef exits with status 2 if there is an error.

The exit status is 0 if the -h or -V command line options are given.

DIAGNOSTICS
EOF in comment

Inappropriate #elif, #else or #endif

Missing macro name in #define or #undef

Obfuscated preprocessor control line

Premature EOF (with the line number of the most recent unterminated #if)

UNIFDEF(1) FreeBSD General Commands Manual (prm) UNIFDEF(1)

FreeBSD 14.2-RELEASE December 3, 2015 FreeBSD 14.2-RELEASE

Too many levels of nesting

Unrecognized preprocessor directive

Unterminated char or string literal

SEE ALSO
cpp(1), diff(1)

The unifdef home page is http://dotat.at/prog/unifdef

HISTORY
The unifdef command appeared in 2.9BSD. ANSI C support was added in FreeBSD 4.7.

AUTHORS
The original implementation was written by Dave Yost <Dave@Yost.com>. Tony Finch

<dot@dotat.at> rewrote it to support ANSI C.

BUGS
+o Expression evaluation is very limited.

+o Character constants are not evaluated. String literals and character constants in -f definition files are

ignored rather than parsed as part of a macro’s replacement tokens.

+o Only the basic form of C++ raw string literals is recognized, like R"(string)" without delimiters as in

R"delimiter(string)delimiter".

+o Source files are processed one line at a time, so preprocessor directives split across more than one

physical line (because of comments or backslash-newline) cannot be handled in every situation.

+o Trigraphs are not recognized.

+o There is no support for macros with different definitions at different points in the source file.

+o The text-mode and ignore functionality does not correspond to modern cpp(1) behaviour.

Please send bug reports by email to <dot@dotat.at>.

UNIFDEF(1) FreeBSD General Commands Manual (prm) UNIFDEF(1)

FreeBSD 14.2-RELEASE December 3, 2015 FreeBSD 14.2-RELEASE

