
NAME
unix - UNIX-domain protocol family

SYNOPSIS
#include <sys/types.h>
#include <sys/un.h>

DESCRIPTION
The UNIX-domain protocol family is a collection of protocols that provides local (on-machine)

interprocess communication through the normal socket(2) mechanisms. The UNIX-domain family

supports the SOCK_STREAM, SOCK_SEQPACKET, and SOCK_DGRAM socket types and uses file

system pathnames for addressing.

ADDRESSING
UNIX-domain addresses are variable-length file system pathnames of at most 104 characters. The

include file <sys/un.h> defines this address:

struct sockaddr_un {

u_char sun_len;

u_char sun_family;

char sun_path[104];

};

Binding a name to a UNIX-domain socket with bind(2) causes a socket file to be created in the file

system. This file is not removed when the socket is closed -- unlink(2) must be used to remove the file.

The length of UNIX-domain address, required by bind(2) and connect(2), can be calculated by the

macro SUN_LEN() defined in <sys/un.h>. The sun_path field must be terminated by a NUL character

to be used with SUN_LEN(), but the terminating NUL is not part of the address.

The UNIX-domain protocol family does not support broadcast addressing or any form of "wildcard"

matching on incoming messages. All addresses are absolute- or relative-pathnames of other

UNIX-domain sockets. Normal file system access-control mechanisms are also applied when

referencing pathnames; e.g., the destination of a connect(2) or sendto(2) must be writable.

CONTROL MESSAGES
The UNIX-domain sockets support the communication of UNIX file descriptors and process credentials

through the use of the msg_control field in the msg argument to sendmsg(2) and recvmsg(2). The items

to be passed are described using a struct cmsghdr that is defined in the include file <sys/socket.h>.

UNIX(4) FreeBSD Kernel Interfaces Manual UNIX(4)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



To send file descriptors, the type of the message is SCM_RIGHTS, and the data portion of the messages

is an array of integers representing the file descriptors to be passed. The number of descriptors being

passed is defined by the length field of the message; the length field is the sum of the size of the header

plus the size of the array of file descriptors.

The received descriptor is a duplicate of the sender’s descriptor, as if it were created via dup(fd) or

fcntl(fd, F_DUPFD_CLOEXEC, 0) depending on whether MSG_CMSG_CLOEXEC is passed in the

recvmsg(2) call. Descriptors that are awaiting delivery, or that are purposely not received, are

automatically closed by the system when the destination socket is closed.

Credentials of the sending process can be transmitted explicitly using a control message of type

SCM_CREDS with a data portion of type struct cmsgcred, defined in <sys/socket.h> as follows:

struct cmsgcred {

pid_t cmcred_pid; /* PID of sending process */

uid_t cmcred_uid; /* real UID of sending process */

uid_t cmcred_euid; /* effective UID of sending process */

gid_t cmcred_gid; /* real GID of sending process */

short cmcred_ngroups; /* number of groups */

gid_t cmcred_groups[CMGROUP_MAX]; /* groups */

};

The sender should pass a zeroed buffer which will be filled in by the system.

The group list is truncated to at most CMGROUP_MAX GIDs.

The process ID cmcred_pid should not be looked up (such as via the KERN_PROC_PID sysctl) for

making security decisions. The sending process could have exited and its process ID already been

reused for a new process.

SOCKET OPTIONS
UNIX domain sockets support a number of socket options for the options level SOL_LOCAL, which

can be set with setsockopt(2) and tested with getsockopt(2):

LOCAL_CREDS This option may be enabled on SOCK_DGRAM,

SOCK_SEQPACKET, or a SOCK_STREAM socket. This option

provides a mechanism for the receiver to receive the credentials of the

process calling write(2), send(2), sendto(2) or sendmsg(2) as a

recvmsg(2) control message. The msg_control field in the msghdr

structure points to a buffer that contains a cmsghdr structure followed

UNIX(4) FreeBSD Kernel Interfaces Manual UNIX(4)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



by a variable length sockcred structure, defined in <sys/socket.h> as

follows:

struct sockcred {

uid_t sc_uid; /* real user id */

uid_t sc_euid; /* effective user id */

gid_t sc_gid; /* real group id */

gid_t sc_egid; /* effective group id */

int sc_ngroups; /* number of supplemental groups */

gid_t sc_groups[1]; /* variable length */

};

The current implementation truncates the group list to at most

CMGROUP_MAX groups.

The SOCKCREDSIZE() macro computes the size of the sockcred

structure for a specified number of groups. The cmsghdr fields have

the following values:

cmsg_len = CMSG_LEN(SOCKCREDSIZE(ngroups))

cmsg_level = SOL_SOCKET

cmsg_type = SCM_CREDS

On SOCK_STREAM and SOCK_SEQPACKET sockets credentials

are passed only on the first read from a socket, then the system clears

the option on the socket.

This option and the above explicit struct cmsgcred both use the same

value SCM_CREDS but incompatible control messages. If this

option is enabled and the sender attached a SCM_CREDS control

message with a struct cmsgcred, it will be discarded and a struct

sockcred will be included.

Many setuid programs will write(2) data at least partially controlled

by the invoker, such as error messages. Therefore, a message

accompanied by a particular sc_euid value should not be trusted as

being from that user.

LOCAL_CREDS_PERSISTENT This option is similar to LOCAL_CREDS, except that socket

credentials are passed on every read from a SOCK_STREAM or

UNIX(4) FreeBSD Kernel Interfaces Manual UNIX(4)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



SOCK_SEQPACKET socket, instead of just the first read.

Additionally, the msg_control field in the msghdr structure points to a

buffer that contains a cmsghdr structure followed by a variable length

sockcred2 structure, defined in <sys/socket.h> as follows:

struct sockcred2 {

int sc_version; /* version of this structure */

pid_t sc_pid; /* PID of sending process */

uid_t sc_uid; /* real user id */

uid_t sc_euid; /* effective user id */

gid_t sc_gid; /* real group id */

gid_t sc_egid; /* effective group id */

int sc_ngroups; /* number of supplemental groups */

gid_t sc_groups[1]; /* variable length */

};

The current version is zero.

The cmsghdr fields have the following values:

cmsg_len = CMSG_LEN(SOCKCRED2SIZE(ngroups))

cmsg_level = SOL_SOCKET

cmsg_type = SCM_CREDS2

The LOCAL_CREDS and LOCAL_CREDS_PERSISTENT options

are mutually exclusive.

LOCAL_CONNWAIT Used with SOCK_STREAM sockets, this option causes the

connect(2) function to block until accept(2) has been called on the

listening socket.

LOCAL_PEERCRED Requested via getsockopt(2) on a SOCK_STREAM or

SOCK_SEQPACKET socket returns credentials of the remote side.

These will arrive in the form of a filled in xucred structure, defined in

<sys/ucred.h> as follows:

struct xucred {

u_int cr_version; /* structure layout version */

uid_t cr_uid; /* effective user id */

short cr_ngroups; /* number of groups */

UNIX(4) FreeBSD Kernel Interfaces Manual UNIX(4)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



gid_t cr_groups[XU_NGROUPS]; /* groups */

pid_t cr_pid; /* process id of the sending process */

};

The cr_version fields should be checked against

XUCRED_VERSION define.

The credentials presented to the server (the listen(2) caller) are those

of the client when it called connect(2); the credentials presented to the

client (the connect(2) caller) are those of the server when it called

listen(2). This mechanism is reliable; there is no way for either party

to influence the credentials presented to its peer except by calling the

appropriate system call (e.g., connect(2) or listen(2)) under different

effective credentials.

To reliably obtain peer credentials on a SOCK_DGRAM socket refer

to the LOCAL_CREDS socket option.

BUFFERING
Due to the local nature of the UNIX-domain sockets, they do not implement send buffers. The send(2)

and write(2) families of system calls attempt to write data to the receive buffer of the destination socket.

The default buffer sizes for SOCK_STREAM and SOCK_SEQPACKET UNIX-domain sockets can be

configured with net.local.stream and net.local.seqpacket branches of sysctl(3) MIB respectively. Note

that setting the send buffer size (sendspace) affects only the maximum write size.

The UNIX-domain sockets of type SOCK_DGRAM are unreliable and always non-blocking for write

operations. The default receive buffer can be configured with net.local.dgram.recvspace. The maximum

allowed datagram size is limited by net.local.dgram.maxdgram. A SOCK_DGRAM socket that has

been bound with bind(2) can have multiple peers connected at the same time. The modern FreeBSD

implementation will allocate net.local.dgram.recvspace sized private buffers in the receive buffer of the

bound socket for every connected socket, preventing a situation when a single writer can exhaust all of

buffer space. Messages coming from unconnected sends using sendto(2) land on the shared buffer of the

receiving socket, which has the same size limit. A side effect of the implementation is that it doesn’t

guarantee that writes from different senders will arrive at the receiver in the same chronological order

they were sent. The order is preserved for writes coming through a particular connection.

SEE ALSO
connect(2), dup(2), fcntl(2), getsockopt(2), listen(2), recvmsg(2), sendto(2), setsockopt(2), socket(2),

CMSG_DATA(3), intro(4), sysctl(8)

UNIX(4) FreeBSD Kernel Interfaces Manual UNIX(4)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



"An Introductory 4.3 BSD Interprocess Communication Tutorial", PS1, 7.

"An Advanced 4.3 BSD Interprocess Communication Tutorial", PS1, 8.

UNIX(4) FreeBSD Kernel Interfaces Manual UNIX(4)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11


